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PrefaeThis book was originally written in Japanese for undergraduate studentsin the Department of Mathematis of Saitama University. In fat, the �rsthand-written draft was prepared for a series of letures on the visosity so-lution theory for undergraduate students in Ehime University and HokkaidoUniversity.The aim here is to present a brief introdution to the theory of visositysolutions for students who have knowledge on Advaned Calulus (i:e: di�er-entiation and integration on funtions of several-variables) and hopefully, alittle on Lebesgue Integration and Funtional Analysis. Sine this is writtenfor undergraduate students who are not neessarily exellent, I try to give\easy" proofs throughout this book. Thus, if you do not feel any diÆultyto read User's guide [6℄, you should try to read that one.I also try not only to show the visosity solution theory but also to men-tion some related \lassial" results.Our plan of this book is as follows: We begin with our motivation insetion 1. Setion 2 introdues the de�nition of visosity solutions and theirproperties. In setion 3, we �rst show \lassial" omparison priniples andthen, extend them to visosity solutions of �rst- and seond-order PDEs,separately. We establish two kinds of existene results via Perron's methodand representation formulas for Bellman and Isaas equations in setion 4.We disuss boundary value problems for visosity solutions in setions 5.Setion 6 is a short introdution to the Lp-visosity solution theory, on whihwe have an exellent book [4℄.In Appendix, whih is the hardest part, we give proofs of fundamentalpropositions.In order to learn more on visosity solutions, I give a list of \books":A popular survey paper [6℄ by Crandall-Ishii-Lions on the theory of visos-ity solutions of seond-order, degenerate ellipti PDEs is still a good hoiefor undergraduate students to learn �rst. However, to my experiene, itseems a bit hard for average undergraduate students to understand.Bardi-Capuzzo Doletta's book [1℄ ontains lots of information on visos-ity solutions for �rst-order PDEs (Hamilton-Jaobi equations) while Fleming-Soner's [10℄ omplements topis on seond-order (degenerate) ellipti PDEswith appliations in stohasti ontrol problems.Barles' book [2℄ is also nie to learn his original tehniques and Frenhlanguage simultaneously ! ii



It has been informed that Ishii would write a book [15℄ in Japanese onvisosity solutions in the near future, whih must be more advaned thanthis.For an important appliation via the visosity solution theory, we referto Giga's [12℄ on urvature ow equations. Also, I reommend the reader toonsult Leture Notes [3℄ (Bardi-Crandall-Evans-Soner-Souganidis) not onlyfor various appliations but also for a \friendly" introdution by Crandall,who �rst introdued the notion of visosity solutions with P.-L. Lions in early80s.If the reader is interested in setion 6, I reommend him/her to attakCa�arelli-Cabr�e's [4℄.As a general PDE theory, although there are so many books on PDEs, Ionly refer to my favorite ones; Gilbarg-Trudinger's [13℄ and Evans' [8℄. Alsoas a textbook for undergraduate students, Han-Lin's short leture notes [14℄is a good hoie.Sine this is a text-book, we do not refer the reader to original papersunless those are not mentioned in the books in our referenes.AknowledgmentFirst of all, I would like to express my thanks to Professors H. Morimotoand Y. Tonegawa for giving me the opportunity to have a series of letures intheir universities. I would also like to thank Professors K. Ishii, T. Nagasawa,and a graduate student, K. Nakagawa, for their suggestions on the �rst draft.I wish to express my gratitude to Professor H. Ishii for having given meenormous supply of ideas sine 1980.I also wish to thank the reviewer for several important suggestions.My �nal thanks go to Professor T. Ozawa for reommending me to publishthis manusript. He kindly suggested me to hange the original Japanese title(\A seret lub on visosity solutions").
iii



Prefae for the 2nd editionAlthough I orreted many errors in the �rst version, there must be somemistakes in this version. I would be glad if the reader would kindly informme errors and typos et.I would like to thank T. Imai, H. Ishii, K. Ishii, K. Kohsaka, H. Mitake, T.Nagasawa, S. Nakagawa, T. Nozokido, M. Ohta, and T. Ohtsuka for pointingout numerous errors in the �rst edition.
9 May 2013 Shigeaki Koike
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1 IntrodutionThroughout this book, we will work in 
 (exept in setions 4.2 and 5.4),where 
 � Rn is open and bounded.We denote by h�; �i the standard inner produt in Rn, and set jxj =qhx; xi for x 2 Rn. We use the standard notion of open balls: For r > 0and x 2 Rn,Br(x) := fy 2 Rn j jx� yj < rg; and Br := Br(0):For a funtion u : 
! R, we denote its gradient and Hessian matrix atx 2 
, respetively, by Du(x) := 0BBB� �u(x)�x1...�u(x)�xn 1CCCA ;
D2u(x) := 0BBBBBBBBBB�

�2u(x)�x21 � � � j-th � � � �2u(x)�x1�xn... ... ...i-th � � � �2u(x)�xi�xj � � � ...... ... ...�2u(x)�xn�x1 � � � � � � � � � �2u(x)�x2n
1CCCCCCCCCCA :Also, Sn denotes the set of all real-valued n � n symmetri matries. Notethat if u 2 C2(
), then D2u(x) 2 Sn for x 2 
.We reall the standard ordering in Sn:X � Y () hX�; �i � hY �; �i for 8� 2 Rn:We will also use the following notion in setions 6 and 7: For � =t(�1; : : : ; �n), � =t (�1; : : : ; �n) 2 Rn, we denote by � 
 � the n � n matrixwhose (i; j)-entry is �i�j for 1 � i; j � n;� 
 � = 0BBBBBBBB� �1�1 � � � j-th � � � �1�n... ... ...i-th � � � �i�j � � � ...... ... ...�n�1 � � � � � � � � � �n�n

1CCCCCCCCA :1



We are onerned with general seond-order partial di�erential equations(PDEs for short): F (x; u(x); Du(x); D2u(x)) = 0 in 
: (1:1)We suppose (exept in several setions) thatF : 
�R�Rn � Sn ! R is ontinuouswith respet to all variables.1.1 From lassial solutions to weak solutionsAs the �rst example of PDEs, we present the Laplae equation:�4u = 0 in 
: (1:2)Here, we de�ne 4u := trae(D2u). In the literature of the visosity solutiontheory, we prefer to have the minus sign in front of 4.Of ourse, sine we do not require any boundary ondition yet, all poly-nomials of degree one are solutions of (1.2). In many textbooks (partiularlythose for engineers), under ertain boundary ondition, we learn how to solve(1.2) when 
 has some speial shapes suh as ubes, balls, the half-spae orthe whole spae Rn. Here, \solve" means that we �nd an expliit formula ofu using elementary funtions suh as polynomials, trigonometri ones, et.However, the study on (1.2) in suh speial domains is not appliablebeause, for instane, solutions of equation (1.2) represent the density of agas in a bottle, whih is neither a ball nor a ube.Unfortunately, in general domains, it seems impossible to �nd formulas forsolutions u with elementary funtions. Moreover, in order to over problemsarising in physis, engineering and �nane, we will have to study more generaland ompliated PDEs than (1.2). Thus, we have to deal with general PDEs(1.1) in general domains.If we give up having formulas for solutions of (1.1), how do we investigatePDEs (1.1) ? In other words, what is the right question in the study of PDEs? In the literature of the PDE theory, the most basi questions are as fol-lows: 2



(1) Existene: Does there exist a solution ?(2) Uniqueness: Is it the only solution ?(3) Stability: If the PDE hanges a little,does the solution hange a little ?The importane of the existene of solutions is trivial sine, otherwise,the study on the PDE ould be useless.To explain the signi�ane of the uniqueness of solutions, let us remem-ber the reason why we study the PDE. Usually, we disuss PDEs or theirsolutions to understand some spei� phenomena in nature, engineerings oreonomis et. Partiularly, people working in appliations want to knowhow the solution looks like, moves, behaves et. For this purpose, it mightbe powerful to use numerial omputations. However, numerial analysisonly shows us an \approximate" shapes, movements, et. Thus, if thereare more than one solution, we do not know whih is approximated by thenumerial solution.Also, if the stability of solutions fails, we ould not predit what will hap-pen from the numerial experiments even though the uniqueness of solutionsholds true.Now, let us ome bak to the most essential question:What is the \solution" of a PDE ?For example, it is natural to all a funtion u : 
 ! R a solution of(1.1) if there exist the �rst and seond derivatives, Du(x) and D2u(x), forall x 2 
, and (1.1) is satis�ed at eah x 2 
 when we plug them in the lefthand side of (1.1). Suh a funtion u will be alled a lassial solution of(1.1).However, unfortunately, it is diÆult to seek for a lassial solution be-ause we have to verify that it is suÆiently di�erentiable and that it satis�esthe equality (1.1) simultaneously.Instead of �nding a lassial solution diretly, we have deided to hoosethe following strategy:(A) Find a andidate of the lassial solution,(B) Chek the di�erentiability of the andidate.In the standard books, the andidate of a lassial solution is alled aweak solution; if the weak solution has the �rst and seond derivatives, then3



it beomes a lassial solution. In the literature, showing the di�erentiabilityof solutions is alled the study on the regularity of those.Thus, with these terminologies, we may rewrite the above with mathe-matial terms: (A) Existene of weak solutions,(B) Regularity of weak solutions.However, when we annot expet lassial solutions of a PDE to exist,what is the right andidate of solutions ?We will all a funtion the andidate of solutions of a PDE if it is a\unique" and \stable" weak solution under a suitable setting. In setion 2,we will de�ne suh a andidate named \visosity solutions" for a large lassof PDEs, and in the proeeding setions, we will extend the de�nition tomore general (possibly disontinuous) funtions and PDEs.In the next subsetion, we show a brief history on \weak solutions" toremind what was known before the birth of visosity solutions.1.2 Typial examples of weak solutionsIn this subsetion, we give two typial examples of PDEs to derive two kindsof weak solutions whih are unique and stable.1.2.1 Burgers' equationWe onsider Burgers' equation, whih is a model PDE in Fluid Mehanis:�u�t + 12 �(u2)�x = 0 in R� (0;1) (1:3)under the initial ondition:u(x; 0) = g(x) for x 2 R; (1:4)where g is a given funtion.In general, we annot �nd lassial solutions of (1.3)-(1.4) even if g issmooth enough. See [8℄ for instane.In order to look for the appropriate notion of weak solutions, we �rstintrodue a funtion spae C10 (R� [0;1)) as a \test funtion spae":C10(R� [0;1)) := ( � 2 C1(R� [0;1)) ����� there is K > 0 suh thatsupp � � [�K;K℄� [0; K℄ ) :4



Here and later, we denote by supp � the following set:supp � := f(x; t) 2 R� [0;1) j �(x; t) 6= 0g:Suppose that u satis�es (1.3). Multiplying (1.3) by � 2 C10(R � [0;1))and then, using integration by parts, we haveZR Z 10  u���t + u22 ���x! (x; t)dtdx+ ZR u(x; 0)�(x; 0)dx = 0:Sine there are no derivatives of u in the above, this equality makes sense ifu 2 [K>0L1((�K;K)�(0; K)). Hene, we may adapt the following propertyas the de�nition of weak solutions of (1.3)-(1.4).8>>><>>>: ZR Z 10  u���t + u22 ���x! (x; t)dtdx+ ZR g(x)�(x; 0)dx = 0for all � 2 C10(R� [0;1)):We often all this a weak solution in the distribution sense. As you no-tied, we derive this notion by an essential use of integration by parts. Wesay that a PDE is in divergene form when we an adapt the notion ofweak solutions in the distribution sense. When the PDE is not in divergeneform, we say that it is in nondivergene form.We note that the solution of (1.3) may have singularities even though theinitial value g belongs to C1 by an observation via \harateristi method".From the de�nition of weak solutions, we an derive the so-alled Rankine-Hugoniot ondition on the set of singularities.On the other hand, unfortunately, we annot show the uniqueness of weaksolutions of (1.3)-(1.4) in general while we know the famous Lax-Oleinikformula (see [8℄ for instane), whih is the \expeted" solution.In order to obtain the uniqueness of weak solutions, for the de�nition, weadd the following property (alled \entropy ondition") whih holds for theexpeted solution given by the Lax-Oleinik formula: There is C > 0 suhthat u(x+ z; t)� u(x; t) � Cztfor all (x; t; z) 2 R� (0;1)� (0;1). We all u an entropy solution of (1.3)if it is a weak solution satisfying this inequality. It is also known that suha weak solution has a ertain stability property.5



We note that this entropy solution satis�es the above mentioned impor-tant properties; \existene, uniqueness and stability". Thus, it must be aright de�nition for weak solutions of (1.3)-(1.4).1.2.2 Hamilton-Jaobi equationsNext, we shall onsider general Hamilton-Jaobi equations, whih arise inOptimal Control and Classial Mehanis:�u�t +H(Du) = 0 in (x; t) 2 Rn � (0;1) (1:5)under the same initial ondition (1.4).In this example, we suppose that H : Rn ! R is onvex, i:e:H(�p+ (1� �)q) � �H(p) + (1� �)H(q) (1:6)for all p; q 2 Rn; � 2 [0; 1℄.Remark. Sine a onvex funtion is loally Lipshitz ontinuous in general,we do not need to assume the ontinuity of H.Example. In Classial Mehanis, we often all this H a \Hamiltonian".As a simple example of H, we have H(p) = jpj2.Notie that we annot adapt the weak solution in the distribution sensefor (1.5) sine we annot use the integration by parts.We next introdue the Lagrangian L : Rn ! R de�ned byL(q) = supp2Rnfhp; qi �H(p)g:When H(p) = jpj2, it is easy to verify that the maximum is attained in theright hand side of the above.It is surprising that we have a neat formula for the expeted solution(alled Hopf-Lax formula) presented byu(x; t) = miny2Rn �tL�x� yt �+ g(y)� : (1:7)More preisely, it is shown that the right hand side of (1.7) is di�erentiableand satis�es (1.5) almost everywhere.6



Thus, we ould all u a weak solution of (1.5)-(1.4) when u satis�es (1.5)almost everywhere. However, if we deide to use this notion as a weak solu-tion, the uniqueness of those fails in general. We will see an example in thenext setion.As was shown for Burgers' equation, in order to say that the \uniqueweak" solution is given by (1.7), we have to add one more property for thede�nition of weak solutions: There is C > 0 suh thatu(x+ z; t)� 2u(x; t) + u(x� z; t) � Cjzj2 (1:8)for all x; z 2 R; t > 0. This is alled the \semi-onavity" of u.We note that (1.8) is a hypothesis on the one-sided bound of seondderivatives of funtions u.In 60s, Kruzkov showed that the limit funtion of approximate solutionsby the vanishing visosity method (see the next setion) has this property(1.8) when H is onvex. He named u a \generalized" solution of (1.5) whenit satis�es (1.5) almost everywhere and (1.8).To my knowledge, between Kruzkov's works and the birth of visositysolutions, there had been no big progress in the study of �rst-order PDEs innondivergene form.Remark. The onvexity (1.6) is a natural hypothesis when we onsideronly optimal ontrol problems where one person intends to minimize some\osts" (\energy" in terms of Physis). However, when we treat game prob-lems (one person wants to minimize osts while the other tries to maximizethem), we meet non-onvex and non-onave (i:e: \fully nonlinear")Hamiltonians. See setion 4.2.In this book, sine we are onerned with visosity solutions of PDEs innondivergene form, for whih the integration by parts argument annot beused to de�ne the notion of weak solutions in the distribution sense, we shallgive typial examples of suh PDEs.Example. (Bellman and Isaas equations)We �rst give Bellman equations and Isaas equations, whih arise in(stohasti) optimal ontrol problems and di�erential games, respetively.As will be seen, those are extensions of linear PDEs.Let A and B be sets of parameters. For instane, we suppose A and Bare (ompat) subsets in Rm (for some m � 1). For a 2 A, b 2 B, x 2 
,7



r 2 R, p =t(p1; : : : ; pn) 2 Rn, and X = (Xij) 2 Sn, we setLa(x; r; p;X) := �trae(A(x; a)X) + hg(x; a); pi+ (x; a)r;La;b(x; r; p;X) := �trae(A(x; a; b)X) + hg(x; a; b); pi+ (x; a; b)r:Here A(�; a); A(�; a; b); g(�; a); g(�; a; b); (�; a) and (�; a; b) are given funtionsfor (a; b) 2 A� B.For inhomogeneous terms, we onsider funtions f(�; a) and f(�; a; b) in 
for a 2 A and b 2 B.We all the following PDEs Bellman equations:supa2AfLa(x; u(x); Du(x); D2u(x))� f(x; a)g = 0 for x 2 
: (1:9)Notie that the supremum over A is taken at eah point x 2 
.Taking aount of one more parameter set B, we all the following PDEsIsaas equations:supa2A infb2BfLa;b(x; u(x); Du(x); D2u(x))� f(x; a; b)g = 0 for x 2 
 (1:10)andinfb2B supa2AfLa;b(x; u(x); Du(x); D2u(x))� f(x; a; b)g = 0 for x 2 
: (1:100)Example. (\Quasi-linear" equations)We say that a PDE is quasi-linear if the oeÆients of D2u ontains uor Du. Although we will not study quasilinear PDEs in this book, we givesome of those whih are in nondivergene form.We �rst give the PDE of mean urvature type:F (x; p;X) := � �jpj2trae(X)� hXp; pi� :Notie that this F is independent of x-variables. We refer to [12℄ for appli-ations where this kind of operators appears.Next, we show a relatively \new" one alled L1-Laplaian:F (x; p;X) := �hXp; pi:Again, this F does not ontain x-variables. We refer to Jensen's work [16℄,where he �rst studied the PDE \�hD2uDu;Dui = 0 in 
" via the visositysolution approah. 8



2 De�nitionIn this setion, we derive the de�nition of visosity solutions of (1.1) via thevanishing visosity method.We also give some basi properties of visosity solutions and equivalentde�nitions using \semi-jets".2.1 Vanishing visosity methodWhen the notion of visosity solutions was born, in order to explain thereason why we need it, many speakers started in their talks by giving thefollowing typial example alled the eikonal equation:jDuj2 = 1 in 
: (2:1)We seek C1 funtions satisfying (2.1) under the Dirihlet ondition:u(x) = 0 for x 2 �
: (2:2)However, sine there is no lassial solution of (2.1)-(2.2) (showing the non-existene of lassial solutions is a good exerise), we intend to derive areasonable de�nition of weak solutions of (2.1).In fat, we expet that the following funtion (the distane from �
)would be the unique solution of this problem (see Fig 2.1):u(x) = dist(x; �
) := infy2�
 jx� yj:

Fig 2.1
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If we onsider the ase when n = 1 and 
 = (�1; 1), then the expetedsolution is given by u(x) = 1� jxj for x 2 [�1; 1℄: (2:3)Sine this funtion is C1 exept at x = 0, we ould deide to all u a weaksolution of (2.1) if it satis�es (2.1) in 
 exept at �nite points.

Fig 2.2
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However, even in the above simple ase of (2.1), we know that there arein�nitely many suh weak solutions of (2.1) (see Fig 2.2); for example, �u isthe weak solution andu(x) = 8><>: x + 1 for x 2 [�1;�12);�x for x 2 [�12 ; 12);x� 1 for x 2 [12 ; 1℄; : : : et:Now, in order to look for an appropriate notion of weak solutions, weintrodue the so-alled vanishing visosity method; for " > 0, we onsiderthe following PDE as an approximate equation of (2.1) when n = 1 and
 = (�1; 1): ( �"u00" + (u0")2 = 1 in (�1; 1);u"(�1) = 0: (2:4)The �rst term, �"u00" , in the left hand side of (2.4) is alled the vanishingvisosity term (when n = 1) as "! 0.By an elementary alulation, we an �nd a unique smooth funtion u"in the following manner: We �rst note that if a lassial solution of (2.4)10



exists, then it is unique. Thus, we may suppose that u0"(0) = 0 by symmetry.Setting v" = u0", we �rst solve the ODE:( �"v0" + v2" = 1 in (�1; 1);v"(0) = 0: (2:5)It is easy to see that the solution of (2.5) is given byv"(x) = � tanh�x"� :Hene, we an �nd u" byu"(x) = �" log0�osh �x"�osh �1"�1A = �" log ex" + e�x"e 1" + e� 1" ! :It is a good exerise to show that u" onverges to the funtion in (2.3)uniformly in [�1; 1℄.Remark. Sine û"(x) := �u"(x) is the solution of( "u00 + (u0)2 = 1 in (�1; 1);u(�1) = 0;we have û(x) := lim"!0 û"(x) = �u(x). Thus, if we replae �"u00 by +"u00,then the limit funtion would be di�erent in general.To de�ne weak solutions, we adapt the properties whih hold for the(uniform) limit of approximate solutions of PDEs with the \minus" vanishingvisosity term.Let us ome bak to general seond-order PDEs:F (x; u;Du;D2u) = 0 in 
: (2:6)We shall use the following de�nition of lassial solutions:De�nition. We all u : 
 ! R a lassial subsolution (resp.,supersolution, solution) of (2:6) if u 2 C2(
) andF (x; u(x); Du(x); D2u(x)) � 0 (resp., � 0; = 0) in 
:11



Remark. If F does not depend on X-variables (i:e: F (x; u;Du) = 0; �rst-order PDEs), we only suppose u 2 C1(
) in the above in plae of u 2 C2(
).Throughout this text, we also suppose the following monotoniity ondi-tion with respet to X-variables:De�nition. We say that F is (degenerate) ellipti if( F (x; r; p;X) � F (x; r; p; Y )for all x 2 
; r 2 R; p 2 Rn; X; Y 2 Sn provided X � Y: (2:7)We notie that if F does not depend on X-variables (i:e: F = 0 is the�rst-order PDE), then F is automatially ellipti.We also note that the left hand side F (x; r; p;X) = �trae(X) of theLaplae equation (1.2) is ellipti.We will derive properties whih hold true for the (uniform) limit (as"! +0) of solutions of�"4u+ F (x; u;Du;D2u) = 0 in 
 (" > 0): (2:8)Note that sine �"trae(X) + F (x; r; p;X) is \uniformly" ellipti (see insetion 3 for the de�nition) provided that F is ellipti and F (x; r; p;X) �CjXj for (x; r; p) 2 
 � R � Rn, it is easier to solve (2.8) than (2.6) inpratie. See [13℄ for instane.Proposition 2.1. Assume that F is ellipti. Let u" 2 C2(
) \ C(
)be a lassial subsolution (resp., supersolution) of (2:8). If u" onverges tou 2 C(
) (as " ! 0) uniformly in any ompat sets K � 
, then, for any� 2 C2(
), we haveF (x; u(x); D�(x); D2�(x)) � 0 (resp., � 0)provided that u� � attains its maximum (resp., minimum) at x 2 
.Remark. When F does not depend on X-variables, we only need to sup-pose � and u" to be in C1(
) as before.Proof. We only give a proof of the assertion for subsolutions sine theother one an be shown in a symmetri way.12



Suppose that u�� attains its maximum at x̂ 2 
 for � 2 C2(
). Setting�Æ(y) := �(y) + Æjy � x̂j4 for small Æ > 0, we see that(u� �Æ)(x̂) > (u� �Æ)(y) for y 2 
 n fx̂g:(This tiny tehnique to replae a maximum point by a \strit" one will appearin Proposition 2.2.)Let x" 2 
 be a point suh that (u" � �Æ)(x") = max
(u" � �Æ). Notethat x" also depends on Æ > 0.Sine u" onverges to u uniformly in Br(x̂) and x̂ is the unique maximumpoint of u � �Æ, we note that lim"!0 x" = x̂. Thus, we see that x" 2 
 forsmall " > 0. Notie that if we argue by � instead of �Æ, the limit of x" mightdi�er from x̂.Thus, at x" 2 
, we have�"4u"(x") + F (x"; u"(x"); Du"(x"); D2u"(x")) � 0:Sine D(u" � �Æ)(x") = 0 and D2(u" � �Æ)(x") � 0, in view of elliptiity, wehave �"4�Æ(x") + F (x"; u"(x"); D�Æ(x"); D2�Æ(x")) � 0:Sending "! 0 in the above, we haveF (x̂; u(x̂); D�Æ(x̂); D2�Æ(x̂)) � 0:Sine D�Æ(x̂) = D�(x̂) and D2�Æ(x̂) = D2�(x̂), we onlude the proof. 2De�nition. We all u : 
 ! R a visosity subsolution (resp.,supersolution) of (2.6) if, for any � 2 C2(
),F (x; u(x); D�(x); D2�(x)) � 0 (resp., � 0)provided that u� � attains its maximum (resp., minimum) at x 2 
.We all u : 
! R a visosity solution of (2.6) if it is both a visositysub- and supersolution of (2.6).Remark. Here, we have given the de�nition to \general" funtions butwe will often suppose that they are (semi-)ontinuous in Theorems et.In fat, in our propositions in setions 2.1, we will suppose that visositysub- and supersolutions are ontinuous.13



However, all the proposition in setion 2.1 an be proved by replaing up-per and lower semi-ontinuity for visosity subsolutions and supersolutions,respetively.We will introdue general visosity solutions in setion 3.3.Notation. In order to memorize the orret inequality, we will oftensay that u is a visosity subsolution (resp., supersolution) ofF (x; u;Du;D2u) � 0 (resp., � 0) in 
if it is a visosity subsolution (resp., supersolution) of (2.6).Proposition 2.2. For u : 
 ! R, the following (1) and (2) are equiva-lent:8>>><>>>: (1) u is a visosity subsolution (resp., supersolution) of (2:6);(2) if 0 = (u� �)(x̂) > (u� �)(x) (resp., < (u� �)(x))for � 2 C2(
); x̂ 2 
 and x 2 
 n fx̂g;then F (x̂; �(x̂); D�(x̂); D2�(x̂)) � 0 (resp., � 0):

Fig 2.3
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Proof. The impliation (1)) (2) is trivial.For the opposite impliation in the subsolution ase, suppose that u� �attains a maximum at x̂ 2 
. Set�Æ(x) = �(x) + Æjx� x̂j4 + (u� �)(x̂):14



See Fig 2.3. Sine 0 = (u� �Æ)(x̂) > (u� �Æ)(x) for x 2 
 n fx̂g, (2) givesF (x̂; �Æ(x̂); D�Æ(x̂); D2�Æ(x̂)) � 0;whih implies the assertion. 2By the next proposition, we reognize that visosity solutions are rightandidates of weak solutions when F is ellipti.Proposition 2.3. Assume that F is ellipti. A funtion u : 
 ! Ris a lassial subsolution (resp., supersolution) of (2:6) if and only if it is avisosity subsolution (resp., supersolution) of (2:6) and u 2 C2(
).Proof. Suppose that u is a visosity subsolution of (2.6) and u 2 C2(
).Taking � � u, we see that u� � attains its maximum at any points x 2 
.Thus, the de�nition of visosity subsolutions yieldsF (x; u(x); Du(x); D2u(x)) � 0 for x 2 
:On the ontrary, suppose that u 2 C2(
) is a lassial subsolution of(2.6).Fix any � 2 C2(
). Assuming that u � � takes its maximum at x 2 
,we have D(u� �)(x) = 0 and D2(u� �)(x) � 0:Hene, in view of elliptiity, we have0 � F (x; u(x); Du(x); D2u(x)) � F (x; u(x); D�(x); D2�(x)): 2We introdue the sets of upper and lower semi-ontinuous funtions: ForK � Rn,USC(K) := fu : K ! R j u is upper semi-ontinuous in Kg;and LSC(K) := fu : K ! R j u is lower semi-ontinuous in Kg:Remark. Throughout this book, we use the following maximum priniplefor semi-ontinuous funtions: 15



An upper semi-ontinuous funtion in a ompat set attains its maximum.We give the following lemma whih will be used without mentioning it.Sine the proof is a bit tehnial, the reader may skip it over �rst.Proposition 2.4. Assume that u 2 USC(
) (resp., u 2 LSC(
)) is a visos-ity subsolution (resp., supersolution) of (2:6) in 
.Then, for any open set 
0 � 
, u is a visosity subsolution (resp., supersolution)of (2:6) in 
0.Proof.We only show the assertion for subsolutions sine the other an be shownsimilarly.For � 2 C2(
0), by Proposition 2.2, we suppose that for some x̂ 2 
0,0 = (u� �)(x̂) > (u� �)(y) for all y 2 
0 n fx̂g:For simpliity, we shall suppose x̂ = 0.Choose r > 0 suh that B2r � 
0. We then hoose �k 2 C1(Rn) (k = 1; 2)suh that 0 � �k � 1 in Rn, �1 + �2 = 1 in Rn,�1 = 1 in Br; and �2 = 1 in Rn nB2r:We de�ne  = �1� +M�2, where M = sup
 u + 1. Sine it is easy to verify that 2 C2(Rn), and 0 = (u�  )(0) > (u�  )(x) for x 2 
 n f0g, we leave the proofto the reader. This onludes the proof. 22.2 Equivalent de�nitionsWe present equivalent de�nitions of visosity solutions. However, sine wewill need those in the proof of uniqueness for seond-order PDEs,the reader may postpone this subsetion until setion 3.3.First, we introdue \semi"-jets of funtions u : 
! R at x 2 
 byJ2;+u(x) := 8>>><>>>:(p;X) 2 Rn � Sn ��������� u(y) � u(x) + hp; y � xi+12hX(y � x); y � xi+o(jy � xj2) as y 2 
! x 9>>>=>>>;16



andJ2;�u(x) := 8>>><>>>:(p;X) 2 Rn � Sn ��������� u(y) � u(x) + hp; y � xi+12hX(y � x); y � xi+o(jy � xj2) as y 2 
! x 9>>>=>>>; :Note that J2;�u(x) = �J2;+(�u)(x).Remark. We do not impose any ontinuity for u in these de�nitions.We reall the notion of \small order o" in the above: For k � 1,f(x) � o(jxjk) (resp., � o(jxjk)) as x! 0() 8><>: there is ! 2 C([0;1); [0;1)) suh that !(0) = 0; andsupx2Brnf0g f(x)jxjk � !(r)  resp., infx2Brnf0g f(x)jxjk � �!(jxj)!In the next proposition, we give some basi properties of semi-jets: (1)is a relation between semi-jets and lassial derivatives, and (2) means thatsemi-jets are \de�ned" in dense sets of 
.Proposition 2.5. For u : 
! R, we have the following:(1) If J2;+u(x) \ J2;�u(x) 6= ;, then Du(x) and D2u(x) exist and,J2;+u(x) \ J2;�u(x) = f(Du(x); D2u(x))g:(2) If u 2 USC(
) (resp., u 2 LSC(
)), then
 = �x 2 
 ���� 9xk 2 
 suh that J2;+u(xk) 6= ;; limk!1xk = x��resp., 
 = �x 2 
 ���� 9xk 2 
 suh that J2;�u(xk) 6= ;; limk!1xk = x�� :Proof. The proof of (1) is a diret onsequene from the de�nition.We give a proof of the assertion (2) only for J2;+.Fix x 2 
 and hoose r > 0 so that Br(x) � 
. For " > 0, we an hoosex" 2 Br(x) suh that u(x")� "�1jx" � xj2 = maxy2Br(x)(u(y)� "�1jy � xj2).Sine jx" � xj2 � "(maxBr(x)�u(x)), we see that x" onverges to x 2 Br(x)17



as "! 0. Thus, we may suppose that x" 2 Br(x) for small " > 0. Hene, wehave u(y) � u(x") + 1"(jy � xj2 � jx" � xj2) for all y 2 Br(x):It is easy to hek that (2(x" � x)="; 2"�1I) 2 J2;+u(x"). 2We next introdue a sort of losure of semi-jets:J2;�u(x) := 8><>:(p;X) 2 Rn � Sn ������� 9xk 2 
 and 9(pk; Xk) 2 J2;�u(xk)suh that (xk; u(xk); pk; Xk)! (x; u(x); p;X) as k !1 9>=>; :Proposition 2.6. For u : 
 ! R, the following (1); (2); (3) are equiva-lent.8>>>>>><>>>>>>: (1) u is a visosity subsolution (resp., supersolution) of (2:6).(2) For x 2 
 and (p;X) 2 J2;+u(x) (resp., J2;�u(x));we have F (x; u(x); p;X) � 0 (resp., � 0):(3) For x 2 
 and (p;X) 2 J2;+u(x) (resp., J2;�u(x));we have F (x; u(x); p;X) � 0 (resp., � 0):Proof. Again, we give a proof of the assertion only for subsolutions.Step 1: (2) =) (3). For x 2 
 and (p;X) 2 J2;+u(x), we an �nd (pk; Xk) 2J2;+u(xk) with xk 2 
 suh that limk!1(xk; u(xk); pk; Xk) = (x; u(x); p;X)and F (xk; u(xk); pk; Xk) � 0;whih implies (3) by sending k !1.Step 2: (3) =) (1). For � 2 C2(
), suppose also (u��)(x) = max(u��).Thus, the Taylor expansion of � at x givesu(y) � u(x)+hD�(x); y�xi+12hD2�(x)(y�x); y�xi+o(jx�yj2) as y ! x:Thus, we have (D�(x); D2�(x)) 2 J2;+u(x) � J2;+u(x).Step 3: (1) =) (2). For (p;X) 2 J2;+u(x) (x 2 
), we an �nd nonde-reasing, ontinuous ! : [0;1)! [0;1) suh that !(0) = 0 andu(y) � u(x) + hp; y � xi + 12hX(y � x); y � xi+ jy � xj2!(jy � xj) (2:9)18



as y ! x. In fat, by the de�nition of o, we �nd !0 2 C([0;1); [0;1)) suhthat !0(0) = 0, and!0(r) � supy2Br(x)nfxg 1jx� yj2 �u(y)� u(x)� hp; y � xi � 12hX(y � x); y � xi� ;we verify that !(r) := sup0�t�r !0(t) satis�es (2.9).Now, we de�ne � by�(y) := hp; y � xi+ 12hX(y � x); y � xi+  (jx� yj);where  (t) := Z p3tt �Z 2ss !(r)dr�ds � t2!(t):It is easy to hek that(D�(x); D2�(x)) = (p;X) and (u� �)(x) � (u� �)(y) for y 2 
:Therefore, we onlude the proof. 2Remark. In view of the proof of Step 3, we verify that for x 2 
,J2;+u(x) = ((D�(x); D2�(x)) 2 Rn � Sn ����� 9� 2 C2(
) suh that u� �attains its maximum at x ) ;J2;�u(x) = ((D�(x); D2�(x)) 2 Rn � Sn ����� 9� 2 C2(
) suh that u� �attains its minimum at x ) :Thus, we intuitively know J2;�u(x) from their graph.Example. Consider the funtion u 2 C([�1; 1℄) in (2.3). From the graphbelow, we may onlude that J2;�u(0) = ;, and J2;+u(0) = (f1g � [0;1)) [(f�1g � [0;1)) [ ((�1; 1)�R). See Fig 2.4.1 and 2.4.2.We omit how to obtain J2;�u(0) of this and the next examples.We shall examine J2;� for disontinuous funtions. For instane, onsiderthe Heaviside funtion: u(x) := ( 1 for x � 0;0 for x < 0:19
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We see that J2;�u(0) = ; and J2;+u(0) = (f0g� [0;1))[ ((0;1)�R). SeeFig 2.5.In order to deal with \boundary value problems" in setion 5, we preparesome notations: For a set K � Rn, whih is not neessarily open, we de�nesemi-jets of u : K ! R at x 2 K byJ2;+K u(x) := 8>>><>>>:(p;X) 2 Rn � Sn ��������� u(y) � u(x) + hp; y � xi+12hX(y � x); y � xi+o(jy � xj2) as y 2 K ! x 9>>>=>>>; ;J2;�K u(x) := 8>>><>>>:(p;X) 2 Rn � Sn ��������� u(y) � u(x) + hp; y � xi+12hX(y � x); y � xi+o(jy � xj2) as y 2 K ! x 9>>>=>>>; ;andJ2;�K u(x) := 8><>:(p;X) 2 Rn � Sn ������� 9xk 2 K and 9(pk; Xk) 2 J2;�K u(xk)suh that (xk; u(xk); pk; Xk)! (x; u(x); p;X) as k !1 9>=>; :Remark. It is obvious to verify thatx 2 
 =) J2;�
 u(x) = J2;�
 u(x) and J2;�
 u(x) = J2;�
 u(x):For x 2 
, we shall simply write J2;�u(x) (resp., J2;�u(x)) for J2;�
 u(x) =J2;�
 u(x) (resp, J2;�
 u(x) = J2;�
 u(x)).Example. Consider u(x) � 0 in K := [0; 1℄. It is easy to observe thatJ2;+u(x) = J2;+K u(x) = f0g � [0;1) provided x 2 (0; 1). It is also easy toverify that J2;+K u(0) = (f0g � [0;1)) [ ((0;1)�R);and J2;�K u(0) = (f0g � (�1; 0℄) [ ((�1; 0)�R):We �nally give some properties of J2;�
 and J2;�
 . Sine the proof is easy,we omit it. 21



Proposition 2.7. For u : 
! R,  2 C2(
) and x 2 
, we haveJ2;�
 (u+  )(x) = (D (x); D2 (x)) + J2;�
 u(x)and J2;�
 (u+  )(x) = (D (x); D2 (x)) + J2;�
 u(x):

22



3 Comparison prinipleIn this setion, we disuss the omparison priniple, whih implies the unique-ness of visosity solutions when their values on �
 oinide (i:e: under theDirihlet boundary ondition). In the study of the visosity solution theory,the omparison priniple has been the main issue beause the uniqueness ofvisosity solutions is harder to prove than existene and stability of them.First, we reall some \lassial" omparison priniples and then, showhow to modify the proof to a modern \visosity" version.In this setion, the omparison priniple roughly means that\Comparison priniple"visosity subsolution uvisosity supersolution vu � v on �
 9>=>; =) u � v in 
Modifying our proofs of omparison theorems below, we obtain a slightlystronger assertion than the above one:visosity subsolution uvisosity supersolution v ) =) max
 (u� v) = max�
 (u� v)We remark that the omparison priniple implies the uniqueness of (on-tinuous) visosity solutions under the Dirihlet boundary ondition:\Uniqueness for the Dirihlet problem"visosity solutions u and vu = v on �
 ) =) u = v in 
Proof of \the omparison priniple implies the uniqueness".Sine u (resp., v) and v (resp., u), respetively, are a visosity subsolutionand supersolution, by u = v on �
, the omparison priniple yields u � v(resp., v � u) in 
. 2In this setion, we mainly deal with the following PDE instead of (2.6).�u+ F (x;Du;D2u) = 0 in 
; (3:1)where we suppose that � � 0; (3:2)and F : 
�Rn � Sn ! R is ontinuous: (3:3)23



3.1 Classial omparison prinipleIn this subsetion, we show that if one of visosity sub- and supersolutionsis a lassial one, then the omparison priniple holds true. We all this the\lassial" omparison priniple.3.1.1 Degenerate ellipti PDEsWe �rst onsider the ase when F is (degenerate) ellipti and � > 0.Proposition 3.1. Assume that � > 0 and (3:3) hold. Assume alsothat F is ellipti. Let u 2 USC(
) (resp., v 2 LSC(
)) be a visositysubsolution (resp., supersolution) of (3:1) and v 2 LSC(
) \ C2(
) (resp.,u 2 USC(
) \ C2(
)) a lassial supersolution (resp., subsolution) of (3:1).If u � v on �
, then u � v in 
.Proof. We only prove the assertion when u is a visosity subsolution of(3.1) sine the other one an be shown similarly.Set max
(u� v) =: � and hoose x̂ 2 
 suh that (u� v)(x̂) = �.Suppose that � > 0 and then, we will get a ontradition. We note thatx̂ 2 
 beause u � v on �
.Thus, the de�nition of u and v respetively yields�u(x̂) + F (x̂; Dv(x̂); D2v(x̂)) � 0 � �v(x̂) + F (x̂; Dv(x̂); D2v(x̂)):Hene, by these inequalities, we have�� = �(u� v)(x̂) � 0;whih ontradits � > 0. 23.1.2 Uniformly ellipti PDEsNext, we present the omparison priniple when � = 0 but F is uniformlyellipti in the following sense. Notie that if � > 0 and F is uniformly ellip-ti, then Proposition 3.1 yields Proposition 3.3 below beause our uniformelliptiity implies (degenerate) elliptiity.Throughout this book, we freeze the \uniform elliptiity" onstants:0 < � � �:24



With these onstants, we introdue the Pui's operators: For X 2 Sn,P+(X) := maxf�trae(AX) j �I � A � �I for A 2 Sng;P�(X) := minf�trae(AX) j �I � A � �I for A 2 Sng:We give some properties of P�. We omit the proof sine it is elementary.Proposition 3.2. For X; Y 2 Sn, we have the following:(1) P+(X) = �P�(�X);(2) P�(�X) = �P�(X) for � � 0;(3) P+ is onvex, P� is onave,(4) ( P�(X) + P�(Y ) � P�(X + Y ) � P�(X) + P+(Y )� P+(X + Y ) � P+(X) + P+(Y ):De�nition. We say that F : 
�Rn�Sn ! R is uniformly ellipti(with the uniform elliptiity onstants 0 < � � �) ifP�(X � Y ) � F (x; p;X)� F (x; p; Y ) � P+(X � Y )for x 2 
; p 2 Rn, and X; Y 2 Sn.We also suppose the following ontinuity on F with respet to p 2 Rn:There is � > 0 suh thatjF (x; p;X)� F (x; p0; X)j � �jp� p0j (3:4)for x 2 
; p; p0 2 Rn, and X 2 Sn.Proposition 3.3. Assume that (3:2), (3:3) and (3:4) hold. Assume alsothat F is uniformly ellipti. Let u 2 USC(
) (resp., v 2 LSC(
)) be avisosity subsolution (resp., supersolution) of (3:1) and v 2 LSC(
)\C2(
)(resp., u 2 USC(
)\C2(
)) a lassial supersolution (resp., subsolution) of(3:1).If u � v on �
, then u � v in 
.Proof. We give a proof only when u is a visosity subsolution and v alassial supersolution of (3.1). 25



Suppose that max
(u � v) =: � > 0. Then, we will get a ontraditionagain.For " > 0, we set �"(x) = "eÆx1 , where Æ := maxf(� + 1)=�; � + 1g > 0.We next hoose " > 0 so small that"maxx2
 eÆx1 � �2Let x̂ 2 
 be the point suh that (u�v+�")(x̂) = max
(u�v+�") � �.By the hoie of " > 0, sine u � v on �
, we see that x̂ 2 
.From the de�nition of visosity subsolutions, we have�u(x̂) + F (x̂; D(v � �")(x̂); D2(v � �")(x̂)) � 0:By the uniform elliptiity and (3.4), we have�u(x̂) + F (x̂; Dv(x̂); D2v(x̂)) + P�(�D2�"(x̂))� �jD�"(x̂)j � 0:Noting that jD�"(x̂)j � Æ"eÆx̂1 and P�(�D2�"(x̂)) � Æ2"�eÆx̂1 , we have�u(x̂) + F (x̂; Dv(x̂); D2v(x̂)) + Æ"(�Æ � �)eÆx̂1 � 0: (3:5)Sine v is a lassial supersolution of (3.1), by (3.5) and Æ � (� + 1)=�, wehave �(u� v)(x̂) + Æ"eÆx̂1 � 0:Hene, we have �(� � �"(x̂)) � �Æ"eÆx̂1 ;whih gives a ontradition beause Æ � � + 1. 23.2 Comparison priniple for �rst-order PDEsIn this subsetion, without assuming that one of visosity sub- and supersolu-tions is a lassial one, we establish the omparison priniple when F in (3.1)does not depend on D2u; �rst-order PDEs. We will study the omparisonpriniple for seond-order ones in the next subsetion.In the visosity solution theory, Theorem 3.4 below was the �rst surprisingresult.Here, instead of (3.1), we shall onsider the following PDE:�u+H(x;Du) = 0 in 
: (3:6)26



We shall suppose that � > 0; (3:7)and that there is a ontinuous funtion !H : [0;1) ! [0;1) suh that!H(0) = 0 andjH(x; p)�H(y; p)j � !H(jx� yj(1 + jpj)) for x; y 2 
 and p 2 Rn: (3:8)In what follows, we will all !H in (3.8) a modulus of ontinuity. Fornotational simpliity, we use the following notation:M := f! : [0;1)! [0;1) j !(�) is ontinuous, !(0) = 0g:Theorem 3.4. Assume that (3:7) and (3:8) hold. Let u 2 USC(
) andv 2 LSC(
) be a visosity sub- and supersolution of (3:6), respetively.If u � v on �
, then u � v in 
.Proof. Suppose max
(u � v) =: � > 0 as usual. Then, we will get aontradition.Notie that sine both u and v may not be di�erentiable, we annot usethe same argument as in Proposition 3.1.Now, we present the most important idea in the theory of visosity solu-tions to overome this diÆulty.Setting �"(x; y) := u(x) � v(y) � (2")�1jx � yj2 for " > 0, we hoose(x"; y") 2 
� 
 suh that�"(x"; y") = maxx;y2
�"(x; y):Noting that �"(x"; y") � maxx2
 �"(x; x) = �, we havejx" � y"j22" � u(x")� v(y")� �: (3:9)Sine 
 is ompat, we an �nd x̂; ŷ 2 
, and "k > 0 suh that limk!1 "k = 0and limk!1(x"k ; y"k) = (x̂; ŷ).We shall simply write " for "k (i:e: in what follows, \"! 0" means that"k ! 0 when k !1).Setting M := max
 u�min
 v, by (3.9), we havejx" � y"j2 � 2"M ! 0 (as "! 0):27



Thus, we have x̂ = ŷ.Sine (3.9) again implies0 � lim inf"!0 jx" � y"j22" � lim sup"!0 jx" � y"j22"� lim sup"!0 (u(x")� v(y"))� �� (u� v)(x̂)� � � 0;we have lim"!0 jx" � y"j2" = 0: (3:10)Moreover, sine (u � v)(x̂) = � > 0, we have x̂ 2 
 from the assumptionu � v on �
. Thus, for small " > 0, we may suppose that (x"; y") 2 
� 
.Furthermore, ignoring the left hand side in (3.9), we have� � lim inf"!0 (u(x")� v(y")): (3:11)Taking �(x) := v(y") + (2")�1jx � y"j2, we see that u � � attains itsmaximum at x" 2 
. Hene, from the de�nition of visosity subsolutions, wehave �u(x") +H �x"; x" � y"" � � 0:On the other hand, taking  (y) := u(x") � (2")�1jy � x"j2, we see thatv �  attains its minimum at y" 2 
. Thus, from the de�nition of visositysupersolutions, we have�v(y") +H �y"; x" � y"" � � 0:The above two inequalities yield�(u(x")� v(y")) � !H  jx" � y"j+ jx" � y"j2" ! :Sending "! 0 in the above together with (3.10) and (3.11), we have �� � 0,whih is a ontradition. 2Remark. In the above proof, we ould show that lim"!0 u(x") = u(x̂) andlim"!0 v(y") = v(x̂) although we do not need this fat. In fat, by (3.9), wehave v(y") � u(x")� �;28



whih implies thatv(x̂) � lim inf"!0 v(y") � lim inf"!0 u(x")� � � lim sup"!0 u(x")� � � u(x̂)� �;and v(x̂) � lim inf"!0 v(y") � lim sup"!0 v(x") � lim sup"!0 u(x")� � � u(x̂)� �:Hene, sine all the inequalities beome the equalities, we haveu(x̂) = lim inf"!0 u(x") = lim sup"!0 u(x") and v(x̂) = lim inf"!0 v(y") = lim sup"!0 v(y"):We remark here that we annot apply Theorem 3.4 to the eikonal equation(2.1) beause we have to suppose � > 0 in the above proof.We shall modify the above proof so that the omparison priniple forvisosity solutions of (2.1) holds.To simplify our hypotheses, we shall onsider the following PDE:H(x;Du)� f(x) = 0 in 
: (3:12)Here, we suppose that H has homogeneous degree � > 0 with respet to theseond variable; there is � > 0 suh thatH(x; �p) = ��H(x; p) for x 2 
; p 2 Rn and � > 0: (3:13)To reover the lak of assumption � > 0, we suppose the positivity of f 2C(
); there is � > 0 suh thatminx2
 f(x) =: � > 0: (3:14)Example. When H(x; p) = jpj2 (i:e: � = 2) and f(x) � 1 ( i:e: � = 1),equation (3.12) beomes (2.1).The seond omparison priniple for �rst-order PDEs is as follows:Theorem 3.5. Assume that (3:8), (3:13) and (3:14) hold. Let u 2USC(
) and v 2 LSC(
) be a visosity sub- and supersolution of (3:12),respetively.If u � v on �
, then u � v in 
. 29



Proof. Suppose that max
(u� v) =: � > 0 as usual. Then, we will get aontradition.If we hoose � 2 (0; 1) so that(1� �)max
 u � �2 ;then we easily verify that max
 (�u� v) =: � � �2 :We note that for any z 2 
 suh that (�u� v)(z) = � , we may supposez 2 
. In fat, otherwise (i:e: z 2 �
), if we further suppose that � < 1 islose to 1 so that �(1 � �)min�
 v � �=4, then the assumption (u � v on�
) implies �2 � � = �u(z)� v(z) � (�� 1)v(z) � �4 ;whih is a ontradition. For simpliity, we shall omit writing the dependeneon � for � and (x"; y") below.At this stage, we shall use the idea in the proof of Theorem 3.4: Considerthe mapping �" : 
� 
! R de�ned by�"(x; y) := �u(x)� v(y)� jx� yj22" :Choose (x"; y") 2 
 � 
 suh that maxx;y2
 �"(x; y) = �"(x"; y"). Notethat �"(x"; y") � � � �=2.As in the proof of Theorem 3.4, we may suppose that lim"!0(x"; y") =(x̂; ŷ) for some (x̂; ŷ) 2 
 � 
 (by taking a subsequene if neessary). Also,we easily see thatjx" � y"j22" � �u(x")� v(y")� � �M� := �max
 u�min
 v: (3:15)Thus, sending " ! 0, we have x̂ = ŷ. Hene, (3.15) implies that �u(x̂) �v(x̂) = � , whih yields x̂ 2 
 beause of the hoie of �. Thus, we see that(x"; y") 2 
� 
 for small " > 0.Moreover, (3.15) again implieslim"!0 jx" � y"j2" = 0: (3:16)30



Now, taking �(x) := (v(y")+(2")�1jx�y"j2)=�, we see that u�� attainsits maximum at x" 2 
. Thus, we haveH  x"; x" � y"�" ! � f(x"):Hene, by (3.13), we haveH �x"; x" � y"" � � ��f(x"): (3:17)On the other hand, taking  (y) = �u(x") � (2")�1jy � x"j2, we see thatv �  attains its minimum at y" 2 
. Thus, we haveH �y"; x" � y"" � � f(y"): (3:18)Combining (3.18) with (3.17), we havef(y")� ��f(x") � H �y"; x" � y"" ��H �x"; x" � y"" �� !H  jx" � y"j 1 + jx" � y"j" !! :Sending "! 0 in the above with (3.16), we have(1� ��)f(x̂) � 0;whih ontradits (3.14). 23.3 Extension to seond-order PDEsIn this subsetion, assuming a key lemma, we will present the omparisonpriniple for fully nonlinear, seond-order, (degenerate) ellipti PDEs (3.1).We �rst remark that the argument of the proof of the omparison priniplefor �rst-order PDEs annot be applied at least immediately.Let us have a look at the diÆulty. Consider the following simple PDE:�u�4u = 0; (3:19)where � > 0. As one an guess, if the argument does not work for this\easiest" PDE, then it must be hopeless for general PDEs.31



However, we emphasize that the same argument as in the proof of The-orem 3.4 does not work. In fat, let u 2 USC(
) and v 2 LSC(
) be avisosity sub- and supersolution of (3.19), respetively, suh that u � v on�
. Setting �"(x; y) := u(x) � v(y) � (2")�1jx � yj2 as usual, we hoose(x"; y") 2 
� 
 so that maxx;y2
 �"(x; y) = �"(x"; y") > 0 as before.We may suppose that (x"; y") 2 
� 
 onverges to (x̂; x̂) (as "! 0) forsome x̂ 2 
 suh that (u � v)(x̂) > 0. From the de�nitions of u and v, wehave �u(x")� n" � 0 � �v(y") + n" :Hene, we only have �(u(x")� v(y")) � 2n" ;whih does not give any ontradition as "! 0.How an we go beyond this diÆulty ?In 1983, P.-L. Lions �rst obtained the uniqueness of visosity solutionsfor ellipti PDEs arising in stohasti optimal ontrol problems (i:e: Bell-man equations; F is onvex in (Du;D2u)). However, his argument heavilydepends on stohasti representation of visosity solutions as \value fun-tions". Moreover, it seems hard to extend the result to Isaas equations; Fis fully nonlinear.The breakthrough was done by Jensen in 1988 in ase when the oeÆ-ients on the seond derivatives of the PDE are onstant. His argument reliespurely on \real-analysis" and an work even for fully nonlinear PDEs.Then, Ishii in 1989 extended Jensen's result to enable us to apply toellipti PDEs with variable oeÆients. We present here the so-alled Ishii'slemma, whih will be proved in Appendix.Lemma 3.6. (Ishii's lemma) Let u and w be in USC(
). For � 2C2(
� 
), let (x̂; ŷ) 2 
� 
 be a point suh thatmaxx;y2
(u(x) + w(y)� �(x; y)) = u(x̂) + w(ŷ)� �(x̂; ŷ):Then, for eah � > 1, there are X = X(�); Y = Y (�) 2 Sn suh that(Dx�(x̂; ŷ); X) 2 J2;+
 u(x̂); (Dy�(x̂; ŷ); Y ) 2 J2;+
 w(ŷ);32



and �(� + kAk) I 00 I ! �  X 00 Y ! � A + 1�A2;where A = D2�(x̂; ŷ) 2 S2n.Remark.We note that if we suppose that u; w 2 C2(
) and (x̂; ŷ) 2 
�
in the hypothesis, then we easily haveX = D2u(x̂); Y = D2w(ŷ); and  X 00 Y ! � A:Thus, the last matrix inequality means that when u and w are only ontin-uous, we get some error term ��1A2, where � > 1 will be large.We also note that for �(x; y) := jx� yj2=(2"), we haveA := D2�(x̂; ŷ) = 1"  I �I�I I ! and kAk = 2" : (3:20)For the last identity, sinekAk2 := sup(*A xy ! ; A xy !+����� jxj2 + jyj2 = 1) ;the triangle inequality yields kAk2 = 2"�2 supfjx � yj2 j jxj2 + jyj2 = 1g �4="2. On the other hand, taking x = �y (i:e: jxj2 = 1=2) in the supremumof the de�nition of kAk2 in the above, we have kAk2 � 4="2.Remark. The other way to show the above identity, we may use the fatthat for B 2 Sn, in general,kBk = maxfj�kj j �k is the eigen-value of Bg:3.3.1 Degenerate ellipti PDEsNow, we give our hypotheses on F , whih is alled the struture ondition.Struture onditionThere is an !F 2 M suh that if X; Y 2 Sn and � > 1 satisfy�3� I 00 I ! �  X 00 �Y ! � 3� I �I�I I ! ;then F (y; �(x� y); Y )� F (x; �(x� y); X)� !F (jx� yj(1 + �jx� yj)) for x; y 2 
: (3:21)
33



In setion 3.3.2, we will see that if F satis�es (3.21), then it is ellipti.We �rst prove the omparison priniple when (3.21) holds for F usingthis lemma. Afterward, we will explain why assumption (3.21) is reasonable.Theorem 3.7. Assume that � > 0 and (3:21) hold. Let u 2 USC(
)and v 2 LSC(
) be a visosity sub- and supersolution of (3:1), respetively.If u � v on �
, then u � v in 
.Proof. Suppose that max
(u� v) =: � > 0 as usual. Then, we will get aontradition.Again, for " > 0, onsider the mapping �" : 
� 
! R de�ned by�"(x; y) = u(x)� v(y)� 12" jx� yj2:Let (x"; y") 2 
�
 be a point suh that maxx;y2
 �"(x; y) = �"(x"; y") ��. As in the proof of Theorem 3.4, we may suppose thatlim"!0(x"; y") = (x̂; x̂) for some x̂ 2 
 (i:e: x"; y" 2 
 for small " > 0):Moreover, sine we have (u� v)(x̂) = �,lim"!0 jx" � y"j2" = 0; (3:22)and � � lim inf"!0 (u(x")� v(y")): (3:23)In view of Lemma 3.6 (taking w := �v, � := 1=", �(x; y) = jx�yj2=(2"))and its Remark, we �nd X; Y 2 Sn suh that�x" � y"" ;X� 2 �J2;+u(x"); �x" � y"" ; Y � 2 �J2;�v(y");and �3"  I 00 I ! �  X 00 �Y ! � 3"  I �I�I I ! :Thus, the equivalent de�nition in Proposition 2.6 implies that�u(x") + F �x"; x" � y"" ;X� � 0 � �v(y") + F �y"; x" � y"" ; Y � :34



Hene, by virtue of our assumption (3.21), we have�(u(x")� v(y")) � !F  jx" � y"j+ jx" � y"j2" ! : (3:24)Taking the limit in�mum, as " ! 0, together with (3.22) and (3.23) in theabove, we have �� � 0;whih is a ontradition. 23.3.2 Remarks on the struture onditionIn order to ensure that assumption (3.21) is reasonable, we �rst present someexamples. For this purpose, we onsider the Isaas equation as in setion1.2.2. F (x; p;X) := supa2A infb2BfLa;b(x; p;X)� f(x; a; b)g;whereLa;b(x; p;X) := �trae(A(x; a; b)X) + hg(x; a; b); pi for (a; b) 2 A� B:If we suppose that A and B are ompat sets in Rm (for some m � 1),and that the oeÆients in the above and f(�; a; b) satisfy the hypothesesbelow, then F satis�es (3.21).8>>>>>>>>>>>>><>>>>>>>>>>>>>:
(1) 9M1 > 0 and 9�ij(�; a; b) : 
! R suh that Aij(x; a; b) =mXk=1�ik(x; a; b)�jk(x; a; b); and j�jk(x; a; b)� �jk(y; a; b)j �M1jx� yjfor x; y 2 
; i; j = 1; : : : ; n; k = 1; : : : ; m; a 2 A; b 2 B;(2) 9M2 > 0 suh that jgi(x; a; b)� gi(y; a; b)j �M2jx� yj for x; y 2 
;i = 1; : : : ; n; a 2 A; b 2 B;(3) 9!f 2 M suh thatjf(x; a; b)� f(y; a; b)j � !f(jx� yj) for x; y 2 
; a 2 A; b 2 B:We shall show (3.21) only whenF (x; p;X) := � nXi;j=1 mXk=1�ik(x; a; b)�jk(x; a; b)Xij35



for a �xed (a; b) 2 A�B beause we an modify the proof below to generalF . Thus, we shall omit writing indies a and b.To verify assumption (3.21), we hoose X; Y 2 Sn suh that X 00 �Y ! � 3� I �I�I I ! :Setting �k =t(�1k(x); : : : ; �nk(x)) and �k =t(�1k(y); : : : ; �nk(y)) for any�xed k 2 f1; 2; : : : ; mg, we have* X 00 �Y ! �k�k ! ; �k�k !+ � 3�* I �I�I I ! �k�k ! ; �k�k !+= 3�j�k � �kj2� 3�nM21 jx� yj2:Therefore, taking the summation over k 2 f1; : : : ; mg, we haveF (y; �(x� y); Y )� F (x; �(x� y); X) � nXi;j=1(�Aij(y)Yij + Aij(x)Xij)= mXk=1(�hY �k; �ki+ hX�k; �ki)� 3�mnM21 jx� yj2: 2We next give other reasons why (3.21) is a suitable assumption. Thereader an skip the proof of the following proposition if he/she feels that theabove reason is enough to adapt (3.21).Proposition 3.8. (1) (3:21) implies elliptiity.(2) Assume that F is uniformly ellipti. If �! 2 M satis�es that supr�0 �!(r)=(r +1) <1, and jF (x; p;X) � F (y; p;X)j � �!(jx� yj(kXk + jpj+ 1)) (3:25)for x; y 2 
; p 2 Rn;X 2 Sn, then (3:21) holds for F .Proof. For a proof of (1), we refer to Remark 3.4 in [6℄.For the reader's onveniene, we give a proof of (2) whih is essentially usedin a paper by Ishii-Lions (1990). Let X;Y 2 Sn satisfy the matrix inequality in(3.21). Note that X � Y . 36



Multiplying  �I �I�I I ! to the last matrix inequality from both sides, wehave  X � Y X + YX + Y X � Y ! � 12� 0 00 I ! :Thus, multiplying  �s� ! for s 2 R and �; � 2 Rn with j�j = j�j = 1, we see that0 � (12� � h(X � Y )�; �i)s2 � 2h(X + Y )�; �is� h(X � Y )�; �i:Hene, we havejh(X + Y )�; �ij2 � jh(X � Y )�; �ij(12� + jh(X � Y )�; �ij);whih implies kX + Y k � kX � Y k1=2(12�+ kX � Y k)1=2:Thus, we havekXk � 12(kX � Y k+ kX + Y k) � kX � Y k1=2(6�+ kX � Y k)1=2:Sine X � Y (i:e: the eigen-values of X � Y are non-positive), we see thatF (y; p;X) � F (y; p; Y ) � P�(X � Y ) � �kX � Y k: (3:26)For the last inequality, we reall Remark after Lemma 3.6.Sine we may suppose �! is onave, for any �xed " > 0, there is M" > 0 suhthat �!(r) � "+M"r and �!(r) = inf">0("+M"r) for r � 0. By (3.25) and (3.26),sine kXk � 3� and kY k � 3�, we haveF (y; p; Y )� F (x; p;X)� "+M"jx� yj(jpj+ 1) + sup0�t�6�nM"jx� yjt1=2(6�+ t)1=2 � �to :Noting that M"jx� yjt1=2(6�+ t)1=2 � �t � 3�M2" �jx� yj2;we have F (y; �(x� y); Y )� F (x; �(x� y);X)� "+M"jx� yj(�jx� yj+ 1) + 3��1M2" �jx� yj2;whih implies the assertion by taking the in�mum over " > 0. 237



3.3.3 Uniformly ellipti PDEsWe shall give a omparison result orresponding to Proposition 3.3; F isuniformly ellipti and � � 0.Theorem 3.9. Assume that (3:2), (3:3), (3:4) and (3:21) hold. Assumealso that F is uniformly ellipti. Let u 2 USC(
) and v 2 LSC(
) be avisosity sub- and supersolution of (3:1), respetively.If u � v on �
, then u � v in 
.Remark. As in Proposition 3.3, we may suppose � = 0.Proof. Suppose that max
(u� v) =: � > 0.Setting � := (�+ 1)=�, we hoose Æ > 0 so thatÆmaxx2
 e�x1 � �2 :We then set � := maxx2
(u(x)� v(x) + Æe�x1) � � > 0.Putting �(x; y) := (2")�1jx � yj2 � Æe�x1 , we let (x"; y") 2 
 � 
 be themaximum point of u(x)� v(y)� �(x; y) over 
� 
.By the ompatness of 
, we may suppose that (x"; y")! (x̂; ŷ) 2 
�
as "! 0 (taking a subsequene if neessary). Sine u(x")�v(y") � �(x"; y"),we have jx"�y"j2 � 2"(max
 u�min
 v+2�1�) and moreover, x̂ = ŷ. Hene,we have u(x̂)� v(x̂) + Æe�x̂1 � �;whih implies x̂ 2 
 beause of our hoie of Æ. Thus, we may suppose that(x"; y") 2 
� 
 for small " > 0. Moreover, as before, we see thatlim"!0 jx" � y"j2" = 0: (3:27)Applying Lemma 3.6 to û(x) := u(x)+Æe�x1 and�v(y), we �ndX; Y 2 Snsuh that ((x" � y")=";X) 2 J2;+û(x"), ((x" � y")="; Y ) 2 J2;�v(y"), and�3"  I OO I ! �  X OO �Y ! � 3"  I �I�I I ! :We shall simply write x and y for x" and y", respetively.38



Note that Proposition 2.7 implies�x� y" � Æ�e�x1e1; X � Æ�2e�x1I1� 2 J2;+u(x);where e1 2 Rn and I1 2 Sn are given bye1 := 0BBBB� 10...0 1CCCCA and I1 := 0BBBB� 1 0 � � � 00 0 � � � 0... ... ...0 0 � � � 0 1CCCCA :Setting r := Æ�e�x1 , from the de�nition of u and v, we have0 � F �y; x� y" ; Y �� F �x; x� y" � re1; X � �rI1� :In view of the uniform elliptiity and (3.4), we have0 � r�+ �rP+(I1) + F �y; x� y" ; Y �� F �x; x� y" ;X� :Hene, by (3.21) and the de�nition of P+, we have0 � r(�� ��) + !F  jx� yj+ jx� yj2" ! ;whih together with (3.27) yields 0 � Æ�e�x̂1(����). This is a ontraditionbeause of our hoie of � > 0. 2
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4 Existene resultsIn this setion, we present some existene results for visosity solutions ofseond-order (degenerate) ellipti PDEs.We �rst present a onvenient existene result via Perron's method, whihwas established by Ishii in 1987.Next, for Bellman and Isaas equations, we give representation formulasfor visosity solutions. From the dynami programming priniple below, wewill realize how natural the de�nition of visosity solutions is.4.1 Perron's methodIn order to introdue Perron's method, we need the notion of visosity solu-tions for semi-ontinuous funtions.De�nition. For any funtion u : 
 ! R, we denote the upper andlower semi-ontinuous envelope of u by u� and u�, respetively, whih arede�ned byu�(x) = lim"!0 supy2B"(x)\
 u(y) and u�(x) = lim"!0 infy2B"(x)\
 u(y):We give some elementary properties for u� and u� without proofs.Proposition 4.1. For u : 
! R, we have(1) u�(x) � u(x) � u�(x) for x 2 
;(2) u�(x) = �(�u)�(x) for x 2 
;(3) u�(resp., u�) is upper (resp., lower) semi-ontinuous in 
; i:e:lim supy!x u�(y) � u�(x); (resp., lim infy!x u�(y) � u�(x)) for x 2 
;(4) if u is upper (resp., lower) semi-ontinuous in 
;then u(x) = u�(x) (resp., u(x) = u�(x)) for x 2 
:With these notations, we give our de�nition of visosity solutions ofF (x; u;Du;D2u) = 0 in 
: (4:1)De�nition. We all u : 
! R a visosity subsolution (resp., superso-lution) of (4.1) if u� (resp., u�) is a visosity subsolution (resp., supersolution)of (4.1). 40



We all u : 
 ! R a visosity solution of (4.1) if it is both a visositysub- and supersolution of (4.1).Remark. We note that we supposed that visosity sub- and supersolu-tions are, respetively, upper and lower semi-ontinuous in our omparisonpriniple in setion 3. Adapting the above new de�nition, we omit the semi-ontinuity for visosity sub- and supersolutions in Propositions 3.1, 3.3 andTheorems 3.4, 3.5, 3.7, 3.9.In what follows, we use the above de�nition.Remark. We remark that the omparison priniple Theorem 3.7 impliesthe ontinuity of visosity solutions.\Continuity of visosity solutions"visosity solution usatis�es u� = u� on �
 ) =) u 2 C(
)Proof of the ontinuity of u. Sine u� and u� are, respetively, a visositysubsolution and a visosity supersolution and u� � u� on �
, Theorem 3.7yields u� � u� in 
. Beause u� � u � u� in 
, we have u = u� = u� in 
;u 2 C(
). 2We �rst show that the \point-wise" supremum (resp., in�mum) of visos-ity subsolutions (resp., supersolution) beomes a visosity subsolution (resp.,supersolution).Theorem 4.2. Let S be a non-empty set of upper (resp., lower) semi-ontinuous visosity subsolutions (resp., supersolutions) of (4:1).Set u(x) := supv2S v(x) (resp., u(x) := infv2S v(x)). If supx2K ju(x)j <1 for any ompat sets K � 
, then u is a visosity subsolution (resp.,supersolution) of (4:1).Proof.We only give a proof for subsolutions sine the other an be provedin a symmetri way.For x̂ 2 
, we suppose that 0 = (u���)(x̂) > (u���)(x) for x 2 
 nfx̂gand � 2 C2(
). We shall show thatF (x̂; �(x̂); D�(x̂); D2�(x̂)) � 0: (4:2)41



Let r > 0 be suh that B2r(x̂) � 
. We an �nd s > 0 suh thatmax�Br(x̂)(u� � �) � �s: (4:3)We hoose xk 2 Br(x̂) suh that limk!1 xk = x̂, u�(x̂) � k�1 � u(xk)and j�(xk)��(x̂)j < 1=k. Moreover, we selet upper semi-ontinuous uk 2 Ssuh that uk(xk) + k�1 � u(xk).By (4.3), for 3=k < s, we havemax�Br(x̂)(uk � �) < (uk � �)(xk):Thus, for large k > 3=s, there is yk 2 Br(x̂) suh that uk � � attains itsmaximum over Br(x̂) at yk. Hene, we haveF (yk; uk(yk); D�(yk); D2�(yk)) � 0: (4:4)Taking a subsequene if neessary, we may suppose z := limk!1 yk. Sine(u� � �)(x̂) � (uk � �)(xk) + 3k � (uk � �)(yk) + 3k � (u� � �)(yk) + 3kby the upper semi-ontinuity of u�, we have(u� � �)(x̂) � (u� � �)(z);whih yields z = x̂, and moreover, limk!1 uk(yk) = u�(x̂) = �(x̂). Therefore,sending k!1 in (4.4), by the ontinuity of F , we obtain (4.2). 2Our �rst existene result is as follows.Theorem 4.3. Assume that F is ellipti. Assume also that there area visosity subsolution � 2 USC(
) \ L1lo(
) and a visosity supersolution� 2 LSC(
) \ L1lo(
) of (4:1) suh that� � � in 
:Then, u(x) := supv2S v(x) (resp., û(x) = infw2Ŝ w(x)) is a visosity solu-tion of (4:1), whereS := ( v 2 USC(
) ����� v is a visosity subsolutionof (4:1) suh that � � v � � in 
 )42



 resp., Ŝ := ( w 2 LSC(
) ����� w is a visosity supersolutionof (4:1) suh that � � w � � in 
 )! :Sketh of proof. We only give a proof for u sine the other an be shownin a symmetri way.First of all, we notie that S 6= ; sine � 2 S.Due to Theorem 4.2, we know that u is a visosity subsolution of (4.1).Thus, we only need to show that it is a visosity supersolution of (4.1).Assume that u 2 LSC(
). Assuming that 0 = (u � �)(x̂) < (u � �)(x)for x 2 
 n fx̂g and � 2 C2(
), we shall show thatF (x̂; �(x̂); D�(x̂); D2�(x̂)) � 0:Suppose that this onlusion fails; there is � > 0 suh thatF (x̂; �(x̂); D�(x̂); D2�(x̂)) � �2�:Hene, there is r > 0 suh thatF (x; �(x) + t; D�(x); D2�(x)) � �� for x 2 Br(x̂) � 
 and jtj � r: (4:5)First, we laim that �(x̂) < �(x̂). Indeed, otherwise, sine � � u � � in
, � � � attains its minimum at x̂ 2 
. See Fig 4.1.

Fig 4.1
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Hene, from the de�nition of supersolution �, we get a ontradition to(4.5) for x = x̂ and t = 0. 43



We may suppose that �(x̂) < �(x̂) sine, otherwise, � = � = � at x̂.Setting 3�̂ := �(x̂) � u(x̂) > 0, from the lower and upper semi-ontinuity of� and �, respetively, we may hoose s 2 (0; r℄ suh that�(x) + �̂ � �(x) + 2�̂ � �(x) for x 2 B2s(x̂):Moreover, we an hoose " 2 (0; s) and �0 2 (0;minf�̂ ; rg) suh that�(x) + 2�0 � u(x) for x 2 Bs+"(x̂) nBs�"(x̂).If we an de�ne a funtion w 2 S suh that w(x̂) > u(x̂), then we �nishour proof beause of the maximality of u at eah point.Now, we setw(x) := ( maxfu(x); �(x) + �0g in Bs(x̂);u(x) in 
 nBs(x̂):See Fig 4.2.

Fig 4.2
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3�̂

It suÆes to show that w 2 S. Beause of our hoie of �0; s > 0, it iseasy to see � � w � � in 
. Thus, we only need to show that w is a visositysubsolution of (4.1).To this end, we suppose that (w� �  )(x) � (w� �  )(z) = 0 for x 2 
,and then we will get F (z; w�(z); D (z); D2 (z)) � 0: (4:6)If z 2 
nBs(x̂) =: 
0, by Proposition 2.4, then u�� attains its maximumat z 2 
0, we get (4.6). 44



If z 2 �Bs(x̂), then (4.6) holds again sine w = u in Bs+"(x̂) nBs�"(x̂).It remains to show (4.6) when z 2 Bs(x̂). Sine � + �0 is a visositysubsolution of (4.1) in Bs(x̂), Theorem 4.2 with 
 := Bs(x̂) yields (4.6). 2Corret proof, whih the reader may skip �rst. Sine we do not suppose thatu 2 LSC(
) here, we have to work with u�.Suppose that 0 = (u���)(x̂) < (u���)(x) for x 2 
nfx̂g for some � 2 C2(
),x̂ 2 
, � > 0 and F (x̂; �(x̂);D�(x̂);D2�(x̂)) � �2�:Hene, we get (4.5) even in this ase.We also show that the w de�ned in the above is a visosity subsolution of (4.1).It only remains to hek that sup
(w � u) > 0.In fat, hoosing xk 2 B1=k(x̂) suh thatu�(x̂) + 1k � u(xk);we easily verify that if 1=k � minf�0=2; sg and j�(x̂)��(xk)j < �0=2, then we havew(xk) � �(xk) + �0 > �(x̂) + �02 = u�(x̂) + �02 � u(xk): 2
4.2 Representation formulaIn this subsetion, for given Bellman and Isaas equations, we present theexpeted solutions, whih are alled \value funtions". In fat, via the dy-nami programming priniple for the value funtions, we verify that they arevisosity solutions of the orresponding PDEs.Although this subsetion is very important to learn how the notion ofvisosity solutions is the right one from a view point of appliations in optimalontrol and games,if the reader is more interested in the PDE theory than these appliations,he/she may skip this subsetion.We shall restrit ourselves toinvestigate the formulas only for �rst-order PDEs45



beause in order to extend the results below to seond-order ones, we needto introdue some terminologies from stohasti analysis. However, this istoo muh for this thin book.As will be seen, we study the minimization of funtionals assoiated withordinary di�erential equations (ODEs for short), whih is alled a \deter-ministi" optimal ontrol problem. When we adapt \stohasti" di�erentialequations instead of ODEs, those are alled \stohasti" optimal ontrolproblems. We refer to [10℄ for the later.Moreover, to avoid mentioning the boundary ondition, we will work onthe whole domain Rn.Throughout this subsetion, we also suppose (3.7); � > 0.4.2.1 Bellman equationWe �x a ontrol set A � Rm for some m 2 N. We de�ne A byA := f� : [0;1)! A j �(�) is measurableg:For x 2 Rn and � 2 A, we denote by X(�; x; �) the solution of( X 0(t) = g(X(t); �(t)) for t > 0;X(0) = x; (4:7)where we will impose a suÆient ondition on ontinuous funtions g : Rn�A! Rn so that (4.7) is uniquely solvable.For given f : Rn�A! R, under suitable assumptions (see (4.8) below),we de�ne the ost funtional for X(�; x; �):J(x; �) := Z 10 e��tf(X(t; x; �); �(t))dt:Here, � > 0 is alled a disount fator, whih indiates that the right handside of the above is �nite.Now, we shall onsider the optimal ost funtional, whih is alled thevalue funtion in the optimal ontrol problem;u(x) := inf�2A J(x; �) for x 2 Rn:Theorem 4.4. (Dynami Programming Priniple) Assume that8><>: (1) supa2A �kf(�; a)kL1(Rn) + kg(�; a)kW 1;1(Rn)� <1;(2) supa2A jf(x; a)� f(y; a)j � !f(jx� yj) for x; y 2 Rn; (4:8)46



where !f 2 M.For any T > 0, we haveu(x) = inf�2A Z T0 e��tf(X(t; x; �); �(t))dt+ e��Tu(X(T ; x; �))! :Proof. For �xed T > 0, we denote by v(x) the right hand side of theabove.Step 1: u(x) � v(x). Fix any " > 0, and hoose �" 2 A suh thatu(x) + " � Z 10 e��tf(X(t; x; �"); �"(t))dt:Setting x̂ = X(T ; x; �") and �̂" 2 A by �̂"(t) = �"(T + t) for t � 0, we haveZ 10 e��tf(X(t; x; �"); �"(t))dt = Z T0 e��tf(X(t; x; �"); �"(t))dt+e��T Z 10 e��tf(X(t; x̂; �̂"); �̂"(t))dt:Here and later, without mentioning, we use the fat thatX(t+ T ; x; �) = X(t; x̂; �̂) for T > 0; t � 0 and � 2 A;where �̂(t) := �(t+ T ) (t � 0) and x̂ := X(T ; x; �):Indeed, the above relation holds true beause of the uniqueness of solutionsof (4.7) under assumptions (4.8). See Fig 4.3.Thus, taking the in�mum in the seond term of the right hand side of theabove among A, we haveu(x) + " � Z T0 e��tf(X(t; x; �); �(t))dt+ e��Tu(x̂);whih implies one-sided inequality by taking the in�mum over A sine " > 0is arbitrary.Step 2: u(x) � v(x). Fix " > 0 again, and hoose �" 2 A suh thatv(x) + " � Z T0 e��tf(X(t; x; �"); �"(t))dt + e��Tu(x̂);47



Fig 4.3
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where x̂ := X(T ; x; �"). We next hoose �1 2 A suh thatu(x̂) + " � Z 10 e��tf(X(t; x̂; �1); �1(t))dt:Now, setting �0(t) := ( �"(t) for t 2 [0; T );�1(t� T ) for t � T;we see that v(x) + 2" � Z 10 e��tf(X(t; x; �0); �0(t))dt;whih gives the opposite inequality by taking the in�mum over �0 2 A sine" > 0 is arbitrary again. 2Now, we give an existene result for Bellman equations.Theorem 4.5. Assume that (4:8) holds. Then, u is a visosity solutionof supa2Af�u� hg(x; a); Dui � f(x; a)g = 0 in Rn: (4:9)Sketh of proof. In Steps 1 and 2, we give a proof when u 2 USC(Rn)and u 2 LSC(Rn), respetively.Step 1: Subsolution property. Fix � 2 C1(Rn), and suppose that 0 =(u� �)(x̂) � (u� �)(x) for some x̂ 2 Rn and any x 2 Rn.Fix any a0 2 A, and set �0(t) := a0 for t � 0 so that �0 2 A.48



For small s > 0, in view of Theorem 4.4, we have�(x̂)� e��s�(X(s; x̂; �0)) � u(x̂)� e��su(X(s; x̂; �0))� Z s0 e��tf(X(t; x̂; �0); a0)dt:Setting X(t) := X(t; x̂; �0) for simpliity, by (4.7), we see thate��tf��(X(t))� hg(X(t); �0); D�(X(t))ig = � ddt �e��t�(X(t))� : (4:10)Hene, we have0 � Z s0 e��tf��(X(t))� hg(X(t); a0); D�(X(t))i � f(X(t); a0)gdt:Therefore, dividing the above by s > 0, and then sending s! 0, we have0 � ��(x̂)� hg(x̂; a0); D�(x̂)i � f(x̂; a0);whih implies the desired inequality of the de�nition by taking the supremumover A.Step 2: Supersolution property. To show that u is a visosity supersolu-tion, we argue by ontradition.Suppose that there are x̂ 2 Rn, � > 0 and � 2 C1(Rn) suh that 0 =(u� �)(x̂) � (u� �)(x) for x 2 Rn, and thatsupa2Af��(x̂)� hg(x̂; a); D�(x̂)i � f(x̂; a)g � �2�:Thus, we an �nd " > 0 suh thatsupa2Af��(x)� hg(x; a); D�(x)i � f(x; a)g � �� for x 2 B"(x̂): (4:11)By assumption (4.8) for g, setting t0 := "=(supa2A kg(�; a)kL1(Rn)+1) > 0,we easily see thatjX(t; x̂; �)� x̂j � Z t0 jX 0(s; x̂; �)jds � " for t 2 [0; t0℄ and � 2 A:Hene, by setting X(t) := X(t; x̂; �) for any �xed � 2 A, (4.11) yields��(X(t))� hg(X(t); �(t)); D�(X(t))i � f(X(t); �(t)) � �� (4:12)49



for t 2 [0; t0℄. Sine (4.10) holds for � in plae of �0, multiplying e��t in(4.12), and then integrating it over [0; t0℄, we obtain�(x̂)� e��t0�(X(t0))� Z t00 e��tf(X(t); �(t))dt � ��� (1� e��t0):Thus, setting �0 = �(1 � e��t0)=� > 0, whih is independent of � 2 A, wehave u(x̂) � Z t00 e��tf(X(t); �(t))dt+ e��t0u(X(t0))� �0:Therefore, taking the in�mum over A, we get a ontradition to Theorem4.4. 2Corret proof, whih the reader may skip �rst.Step 1: Subsolution property. Assume that there are x̂ 2 Rn, � > 0 and � 2C1(Rn) suh that 0 = (u� � �)(x̂) � (u� � �)(x) for x 2 Rn and thatsupa2Af��(x̂)� hg(x̂; a);D�(x̂)i � f(x̂; a)g � 2�:In view of (4.8), there are a0 2 A and r > 0 suh that��(x)� hg(x; a0);D�(x)i � f(x; a0) � � for x 2 B2r(x̂): (4:13)For large k � 1, we an hoose xk 2 B1=k(x̂) suh that u�(x̂) � u(xk) + k�1and j�(x̂)� �(xk)j < 1=k. We will only use k suh that 1=k � r.Setting �0(t) := a0, we note that Xk(t) := X(t;xk; �0) 2 B2r(x̂) for t 2 [0; t0℄with some t0 > 0 and for large k.On the other hand, by Theorem 4.4, we haveu(xk) � Z t00 e��tf(Xk(t); a0)dt+ e��t0u(Xk(t0)):Thus, we have�(xk)� 2k � �(x̂)� 1k � u(xk) � Z t00 e��tf(Xk(t); a0)dt+ e��t0�(Xk(t0)):Hene, by (4.13) as in Step 1 of Sketh of proof, we see that�2k � Z t00 e��tff(Xk(t); a0) + hg(Xk(t); a0);D�(Xk(t))i � ��(Xk(t))gdt� � �� (1� e��t0); 50



whih is a ontradition for large k.Step 2: Supersolution property. Assume that there are x̂ 2 Rn, � > 0 and� 2 C1(Rn) suh that 0 = (u� � �)(x̂) � (u� � �)(x) for x 2 Rn and thatsupa2Af��(x̂)� hg(x̂; a);D�(x̂)i � f(x̂; a)g � �2�:In view of (4.8), there is r > 0 suh that��(x)� hg(x; a);D�(x)i � f(x; a) � �� for x 2 B2r(x̂) and a 2 A: (4:14)For large k � 1, we an hoose xk 2 B1=k(x̂) suh that u�(x̂) � u(xk) � k�1and j�(x̂)� �(xk)j < 1=k. In view of (4.8), there is t0 > 0 suh thatXk(t;xk; �) 2 B2r(x̂) for all k � 1r ; � 2 A and t 2 [0; t0℄:Now, we selet �k 2 A suh thatu(xk) + 1k � Z t00 e��tf(X(t;xk; �k); �k(t))dt+ e��t0u(X(t0;xk; �k)):Setting Xk(t) := X(t;xk; �k), we have�(xk) + 3k � �(x̂) + 2k � u(xk) + 1k � Z t00 e��tf(Xk(t); �k(t))dt + e��t0�(Xk(t)):Hene, we have3k � Z t00 e��tfhg(Xk(t); �k(t));D�(Xk(t))i+ f(Xk(t); �k(t)) � ��(Xk(t))gdt:Putting (4.14) with �k in the above, we have3k � � Z t00 e��tdt;whih is a ontradition for large k � 1. 24.2.2 Isaas equationIn this subsetion, we study fully nonlinear PDEs (i:e: p 2 Rn ! F (x; p) isneither onvex nor onave) arising in di�erential games.
51



We are given ontinuous funtions f : Rn � A � B ! R and g : Rn �A� B ! Rn suh that8>><>>: (1) sup(a;b)2A�B nkf(�; a; b)kL1(Rn) + kg(�; a; b)kW 1;1(Rn)o <1;(2) sup(a;b)2A�B jf(x; a; b)� f(y; a; b)j � !f(jx� yj) for x; y 2 Rn; (4:15)where !f 2 M.Under (4.15), we shall onsider Isaas equations:supa2A infb2Bf�u� hg(x; a; b); Dui � f(x; a; b)g = 0 in Rn; (4:16)and infb2B supa2Af�u� hg(x; a; b); Dui � f(x; a; b)g = 0 in Rn: (4:160)As in the previous subsetion, we shall derive the expeted solution.We �rst introdue some notations: While we will use the same notion Aas before, we setB := f� : [0;1)! B j �(�) is measurableg:Next, we introdue the so-alled sets of \non-antiipating strategies":� := 8><>:  : A! B ������� for any T > 0; if �1 and �2 2 A satisfythat �1(t) = �2(t) for a:a: t 2 (0; T );then [�1℄(t) = [�2℄(t) for a:a: t 2 (0; T ) 9>=>;and � := 8><>: Æ : B ! A ������� for any T > 0; if �1 and �2 2 B satisfythat �1(t) = �2(t) for a:a: t 2 (0; T );then Æ[�1℄(t) = Æ[�2℄(t) for a:a: t 2 (0; T ) 9>=>; :Using these notations, we will onsider maximizing-minimizing problemsof the following ost funtional: For � 2 A, � 2 B, and x 2 Rn,J(x; �; �) := Z 10 e��tf(X(t; x; �; �); �(t); �(t))dt;52



where X(�; x; �; �) is the (unique) solutions of( X 0(t) = g(X(t); �(t); �(t)) for t > 0;X(0) = x: (4:17)The expeted solutions for (4.16) and (4:160), respetively, are given byu(x) = sup2� inf�2A Z 10 e��tf(X(t; x; �; [�℄); �(t); [�℄(t))dt;and v(x) = infÆ2� sup�2B Z 10 e��tf(X(t; x; Æ[�℄; �); Æ[�℄(t); �(t))dt:We all u and v upper and lower value funtions of this di�erential game,respetively. In fat, under appropriate hypotheses, we expet that v � u,whih annot be proved easily. To show v � u, we �rst observe that u and vare, respetively, visosity solutions of (4.16) and (4:160). Noting thatsupa2A infb2Bf�r�hg(x; a; b); pi�f(x; a; b)g � infb2B supa2Af�r�hg(x; a; b); pi�f(x; a; b)gfor (x; r; p) 2 Rn�R�Rn, we see that u (resp., v) is a visosity supersolution(resp., subsolution) of (4:160) (resp., (4.16)). Thus, the standard omparisonpriniple implies v � u in Rn (under suitable growth ondition at jxj ! 1for u and v).We shall only deal with u sine the orresponding results for v an beobtained in a symmetri way.To show that u is a visosity solution of the Isaas equation (4.16), we �rstestablish the dynami programming priniple as in the previous subsetion:Theorem 4.6. (Dynami Programming Priniple) Assume that (4:15)hold. Then, for T > 0, we haveu(x) = sup2� inf�2A0� Z T0 e��tf(X(t; x; �; [�℄); �(t); [�℄(t))dt+e��Tu(X(T ; x; �; [�℄)) 1A :Proof. For a �xed T > 0, we denote by w(x) the right hand side of theabove.Step 1: u(x) � w(x). For any " > 0, we hoose " 2 � suh thatu(x)� " � inf�2A Z 10 e��tf(X(t; x; �; "[�℄); �(t); "[�℄(t))dt =: I":53



For any �xed �0 2 A, we de�ne the mapping T0 : A! A byT0[�℄ := ( �0(t) for t 2 [0; T );�(t� T ) for t 2 [T;1) for � 2 A:Thus, for any � 2 A, we haveI" � Z T0 e��tf(X(t; x; �0; "[�0℄); �0(t); "[�0℄(t))dt+ Z 1T e��tf(X(t; x; T0[�℄; "[T0[�℄℄); T0[�℄(t); "[T0[�℄℄(t))dt=: I1" + I2" :We next de�ne ̂ 2 � bŷ[�℄(t) := "[T0[�℄℄(t+ T ) for t � 0 and � 2 A:Note that ̂ belongs to �.Setting x̂ := X(T ; x; �0; "[�0℄), we haveI2" = e��T Z 10 e��tf(X(t; x̂; �; ̂[�℄); �(t); ̂[�℄(t))dt:Taking the in�mum over � 2 A, we haveu(x)� " � I1" + e��T inf�2A Z 10 e��tf(X(t; x̂; �; ̂[�℄); �(t); ̂[�℄(t))dt=: I1" + Î2" :Sine Î2" � e��Tu(x̂), we haveu(x)� " � I1" + e��Tu(x̂);whih implies u(x)� " � w(x) by taking the in�mum over �0 2 A and then,the supremum over �. Therefore, we get the one-sided inequality sine " > 0is arbitrary.Step 2: u(x) � w(x). For " > 0, we hoose 1" 2 � suh thatw(x)� " � inf�2A0� Z T0 e��tf(X(t; x; �; 1" [�℄); �(t); 1" [�℄(t))dt+e��Tu(X(T ; x; �; 1" [�℄)) 1A :54



For any �xed �0 2 A, setting x̂ = X(T ; x; �0; 1" [�0℄), we havew(x)� " � Z T0 e��tf(X(t; x; �0; 1" [�0℄); �0(t); 1" [�0℄(t))dt+ e��Tu(x̂):Next, we hoose 2" 2 � suh thatu(x̂)� " � inf�2A Z 10 e��tf(X(t; x̂; �; 2" [�℄); �(t); 2" [�℄(t))dt: =: I:For � 2 A, we de�ne the mapping T1 : A! A byT1[�℄(t) := �(t+ T ) for t � 0:Thus, we haveI � Z 10 e��tf(X(t; x̂; T1[�0℄; 2" [T1[�0℄℄); T1[�0℄(t); 2" [T1[�0℄℄(t))dt =: Î :Now, for � 2 A, settinĝ[�℄(t) := ( 1" [�℄(t) for t 2 [0; T );2" [T1[�℄℄(t� T ) for t 2 [T;1);and X̂(t) := X(t; x̂; T1[�0℄; 2" [T1[�0℄℄), we haveÎ = Z 1T e��(t�T )f(X̂(t� T ); T1[�0℄(t� T ); 2" [T1[�0℄℄(t� T ))dt= e�T Z 1T e��tf(X̂(t� T ); �0(t); ̂[�0℄(t))dt:Sine X(t; x; �0; ̂[�0℄) = ( X(t; x; �0; 1" [�0℄) for t 2 [0; T );X̂(t� T ) for t 2 [T;1);we have w(x)� 2" � Z 10 e��tf(X(t; x; �0; ̂[�0℄); �0(t); ̂[�0℄(t))dt:Sine �0 is arbitrary, we havew(x)� 2" � inf�2A Z 10 e��tf(X(t; x; �; ̂[�℄); �(t); ̂[�℄(t))dt;55



whih yields the assertion by taking the supremum over � and then, bysending "! 0. 2Now, we shall verify that the value funtion u is a visosity solution of(4.16).Sine we only give a sketh of proofs, one an skip the following theorem.For a orret proof, we refer to [1℄, originally by Evans-Souganidis (1984).Theorem 4.7. Assume that (4:15) holds.(1) Then, u is a visosity subsolution of (4:16).(2) Assume also the following properties:8>>><>>>: (i) A � Rm is ompat for some integer m � 1:(ii) there is an !A 2M suh thatjf(x; a; b)� f(x; a0; b)j + jg(x; a; b) � g(x; a0; b)j � !A(ja� a0j)for x 2 Rn; a; a0 2 A and b 2 B: (4:18)Then, u is a visosity supersolution of (4:16).Remark. To show that v is a visosity subsolution of (4:160), instead of (4.18),we need to suppose the following hypotheses:8>>><>>>: (i) B � Rm is ompat for some integer m � 1:(ii) there is an !B 2M suh thatjf(x; a; b) � f(x; a; b0)j+ jg(x; a; b) � g(x; a; b0)j � !B(jb� b0j)for x 2 Rn; b; b0 2 B and a 2 A; (4:180)while to verify that v is a visosity supersolution of (4:160), we only need (4.15).Sketh of proof.We shall only prove the assertion assuming that u 2 USC(Rn)and u 2 LSC(Rn) in Step 1 and 2, respetively.To give a orret proof without the semi-ontinuity assumption, we need a bitareful analysis similar to the proof for Bellman equations. We omit the orretproof here.Step 1: Subsolution property. Suppose that the subsolution property fails; thereare x 2 Rn, � > 0 and � 2 C1(Rn) suh that 0 = (u� �)(x) � (u� �)(y) (for ally 2 Rn) and supa2A infb2Bf�u(x)� hg(x; a; b);D�(x)i � f(x; a; b)g � 3�:We note that X(�;x; �; [�℄) are uniformly ontinuous for any (�; ) 2 A � �in view of (4.15). 56



Thus, we an hoose that a0 2 A suh thatinfb2Bf��(x) � hg(x; a0; b);D�(x)i � f(x; a0; b)g � 2�:For any  2 �, setting �0(t) = a0 for t � 0, we simply write X(�) forX(�;x; �0; [�0℄). Thus, we �nd small t0 > 0 suh that��(X(t))� hg(X(t); a0; [�0℄(t));D�(X(t))i � f(X(t); a0; [�0℄(t)) � �for t 2 [0; t0℄. Multiplying e��t in the above and then, integrating it over [0; t0℄,we have�� (1� e��t0) � � Z t00 � ddt �e��t�(X(t))� + e��tf(X(t); a0; [�0℄(t))� dt= �(x)� e��t0�(X(t0))� Z t00 e��tf(X(t); a0; [�0℄(t))dt:Hene, we haveu(x)� �� (1� e��t0) � Z t00 e��tf(X(t); a0; [�0℄(t))dt+ e��t0u(X(t0)) =: Î :Taking the in�mum over A, we haveÎ � inf�2A0� Z t00 e��tf(X(t;x; �; [�℄); �(t); [�℄(t))dt+e��t0u(X(t0;x; �; [�℄)) 1A :Therefore, sine  2 � is arbitrary, we haveu(x)� �� (1� e��t0) � sup2� inf�2A0� Z t00 e��tf(X(t;x; �; [�℄); �(t); [�℄(t))dt+e��t0u(X(t0;x; �; [�℄)) 1A ;whih ontradits Theorem 4.6.Step 2: Supersolution property. Suppose that the supersolution property fails;there are x 2 Rn, � > 0 and � 2 C1(Rn) suh that 0 = (u � �)(x) � (u � �)(y)for y 2 Rn, andsupa2A infb2Bf�u(x)� hg(x; a; b);D�(x)i � f(x; a; b)g � �3�:For any a 2 A, there is b(a) 2 B suh that�u(x)� hg(x; a; b(a));D�(x)i � f(x; a; b(a)) � �2�:57



In view of (4.18), there is "(a) > 0 suh that if ja� a0j < "(a) and jx� yj < "(a),then we have ��(y)� hg(y; a0; b(a));D�(y)i � f(y; a0; b(a)) � ��:From the ompatness of A, we may selet fakgMk=1 suh thatA = M[k=1Ak;where Ak := fa 2 A j ja� akj < "(ak)g:Furthermore, we set Â1 = A1, and indutively, Âk := Ak n [k�1j=1Aj ; Âk \ Âj = ;for k 6= j. We may also suppose that Âk 6= ; for k = 1; : : : ;M .For � 2 A, we de�ne0[�℄(t) := b(ak) provided �(t) 2 Âk:Now, setting X(t) := X(t;x; �; 0[�℄), we �nd t0 > 0 suh that��(X(t)) � hg(X(t); �(t); 0 [�℄(t));D�(X(t))i � f(X(t); �(t); 0[�℄(t)) � ��for t 2 [0; t0℄. Multiplying e��t in the above and then, integrating it, we obtain�(x)� e��t0�(X(t0))� Z t00 e��tf(X(t); �(t); 0[�℄(t))dt � � �� (1� e��t0):Sine � 2 A is arbitrary, we haveu(x) + �� (1� e��t0) � inf�2A0� Z t00 e��tf(X(t; x; �; 0[�℄); �(t); 0[�℄(t))dt+e��t0u(X(t0; x; �; 0[�℄)) 1A ;whih ontradits Theorem 4.6 by taking the supremum over �. 24.3 StabilityIn this subsetion, we present a stability result for visosity solutions, whihis one of the most important properties for \solutions" as noted in setion 1.Thus, this result justi�es our notion of visosity solutions.However, sine we will only use Proposition 4.8 below in setion 7.3, thereader may skip the proof. 58



First of all, for possibly disontinuous F : 
�R�Rn�Sn ! R, we areonerned with F (x; u;Du;D2u) = 0 in 
: (4:19)We introdue the following notation:F�(x; r; p;X) := lim"!0 inf ( F (y; s; q; Y ) ����� y 2 
 \ B"(x); js� rj < ";jq � pj < "; kY �Xk < " ) ;F �(x; r; p;X) := lim"!0 sup( F (y; s; q; Y ) ����� y 2 
 \ B"(x); js� rj < ";jq � pj < "; kY �Xk < " ) :De�nition. We all u : 
 ! R a visosity subsolution (resp., super-solution) of (4.19) if u� (resp., u�) is a visosity subsolution (resp., super-soluion) ofF�(x; u;Du;D2u) � 0 �resp., F �(x; u;Du;D2u) � 0� in 
:We all u : 
 ! R a visosity solution of (4.19) if it is both a visositysub- and supersolution of (4.19).Now, for given ontinuous funtions Fk : 
�R�Rn � Sn ! R, we setF (x; r; p;X):= limk!1 inf 8><>: Fj(y; s; q; Y ) ������� jy � xj < 1=k; js� rj < 1=k;jq � pj < 1=k; kY �Xk < 1=kand j � k 9>=>; ;F (x; r; p;X):= limk!1 sup8><>: Fj(y; s; q; Y ) ������� jy � xj < 1=k; js� rj < 1=k;jq � pj < 1=k; kY �Xk < 1=kand j � k 9>=>; :Our stability result is as follows.Proposition 4.8. Let Fk : 
 � R � Rn � Sn ! R be ontinuousfuntions. Let uk : 
 ! R be a visosity subsolution (resp., supersolution)of Fk(x; uk; Duk; D2uk) = 0 in 
:59



Setting u (resp., u) byu(x) := limk!1 supf(uj)�(y) j y 2 B1=k(x) \ 
; j � kg�resp., u(x) := limk!1 inff(uj)�(y) j y 2 B1=k(x) \ 
; j � kg�for x 2 
, then u (resp., u) is a visosity subsolution (resp., supersolution)of F (x; u;Du;D2u) � 0 (resp., F (x; u;Du;D2u) � 0) in 
:Remark. We note that u 2 USC(
), u 2 LSC(
), F 2 LSC(
 �R �Rn � Sn) and F 2 USC(
�R�Rn � Sn).Proof. We only give a proof for subsolutions sine the other an be shownsimilarly.Given � 2 C2(
), we let x0 2 
 be suh that 0 = (u��)(x0) > (u��)(x)for x 2 
 n fx0g. We shall show that F (x0; u(x0); D�(x0); D2�(x0)) � 0.We may hoose xk 2 Br(x0) (for a subsequene if neessary), where r 2(0;dist(x0; �
)), suh thatlimk!1xk = x0 and limk!1(uk)�(xk) = u(x0): (4:20)We selet yk 2 Br(x0) suh that ((uk)� � �)(yk) = supBr(x0)((uk)� � �).We may also suppose that limk!1 yk = z for some z 2 Br(x0) (takinga subsequene if neessary). Sine ((uk)� � �)(yk) � ((uk)� � �)(xk), (4.20)implies0 = lim infk!1 ((uk)� � �)(xk) � lim infk!1 ((uk)� � �)(yk)� lim infk!1 (uk)�(yk)� �(z)� lim supk!1 (uk)�(yk)� �(z) � (u� �)(z):Thus, this yields z = x0 and limk!1(uk)�(yk) = u(x0). Hene, we see thatyk 2 Br(x0) for large k � 1. Sine (uk)� � � attains a maximum over Br(x0)at yk 2 Br(x0), by the de�nition of uk (with Proposition 2.4 for 
0 = Br(x0)),we have Fk(yk; (uk)�(yk); D�(yk); D2�(yk)) � 0;whih onludes the proof by taking the limit in�mum with the de�nition ofF . 2 60



5 Generalized boundary value problemsIn order to obtain the uniqueness of solutions of an ODE, we have to supposeertain initial or boundary ondition. In the study of PDEs, we need toimpose appropriate onditions on �
 for the uniqueness of solutions.Following the standard PDE theory, we shall treat a few typial boundaryonditions in this setion.Sine we are mainly interested in degenerate ellipti PDEs, we annotexpet \solutions" to satisfy the given boundary ondition on the wholeof �
. The simplest example is as follows: For 
 := (0; 1), onsider the\degenerate" ellipti PDE�dudx + u = 0 in (0; 1):Note that it is impossible to �nd a solution u of the above suh that u(0) =u(1) = 1.Our plan is to propose a de�nition of \generalized" solutions for boundaryvalue problems. For this purpose, we extend the notion of visosity solutionsto possibly disontinuous PDEs on 
 while we normally onsider those in 
.For general G : 
�R�Rn � Sn ! R, we are onerned withG(x; u;Du;D2u) = 0 in 
: (5:1)As in setion 4.3, we de�neG�(x; r; p;X) := lim"!0 inf ( G(y; s; q; Y ) ����� y 2 
 \ B"(x); js� rj < ";jq � pj < "; kY �Xk < " ) ;G�(x; r; p;X) := lim"!0 sup( G(y; s; q; Y ) ����� y 2 
 \B"(x); js� rj < ";jq � pj < "; kY �Xk < " ) :De�nition. We all u : 
! R a visosity subsolution (resp., superso-lution) of (5.1) if, for any � 2 C2(
),G�(x; u�(x); D�(x); D2�(x)) � 0�resp., G�(x; u�(x); D�(x); D2�(x)) � 0�provided that u� � � (resp., u� � �) attains its maximum (resp., minimum)at x 2 
. 61



We all u : 
 ! R a visosity solution of (5.1) if it is both a visositysub- and supersolution of (5.1).Our omparison priniple in this setting is as follows:\Comparison priniple in this setting"visosity subsolution u of (5.1)visosity supersolution v of (5.1) ) =) u � v in 
Note that the boundary ondition is ontained in the de�nition.Using the above new de�nition, we shall formulate the boundary valueproblems in the visosity sense. Given F : 
 � R � Rn � Sn ! R andB : �
�R�Rn�Sn ! R, we investigate general boundary value problems( F (x; u;Du;D2u) = 0 in 
;B(x; u;Du;D2u) = 0 on �
: (5:2)Setting G byG(x; r; p;X) := ( F (x; r; p;X) for x 2 
;B(x; r; p;X) for x 2 �
;we give the de�nition of boundary value problems (5.2) in the visosity sense.De�nition. We all u : 
! R a visosity subsolution (resp., superso-lution) of (5.2) if it is a visosity subsolution (resp., supersolution) of (5.1),where G is de�ned in the above.We all u : 
 ! R a visosity solution of (5.2) if it is both a visositysub- and supersolution of (5.2).Remark. When F and B are ontinuous and G is given as above, G� andG� an be expressed in the following manner:G�(x; r; p;X) = ( F (x; r; p;X) for x 2 
;minfF (x; r; p;X); B(x; r; p;X)g for x 2 �
;G�(x; r; p;X) = ( F (x; r; p;X) for x 2 
;maxfF (x; r; p;X); B(x; r; p;X)g for x 2 �
:62



It is not hard to extend the existene and stability results orrespondingto Theorem 4.3 and Proposition 4.8, respetively, to visosity solutions inthe above sense. However, it is not straightforward to show the omparisonpriniple in this new setting. Thus, we shall onentrate our attention tothe omparison priniple, whih implies the uniqueness (and ontinuity) ofvisosity solutions.The main diÆulty to prove the omparison priniple is that we have to\avoid" the boundary onditions for both of visosity sub- and supersolu-tions.To explain this, let us onsider the ase when G is given by (5.2). Let uand v be, respetively, a visosity sub- and supersolution of (5.1). We shallobserve that the standard argument in Theorem 3.7 does not work.For " > 0, suppose that (x; y)! u(x)� v(y)� (2")�1jx� yj2 attains itsmaximum at (x"; y") 2 
�
. Notie that there is NO reason to verify that(x"; y") 2 
� 
.The worst ase is that (x"; y") 2 �
� �
. In fat, in view of Lemma 3.6,we �nd X; Y 2 Sn suh that ((x"� y")=";X) 2 J2;+
 u(x"), ((x"� y")="; Y ) 2J2;�
 v(y"), the matrix inequalities in Lemma 3.6 hold for X; Y . Hene, wehave min�F �x"; u(x"); x" � y"" ;X� ; B �x"; u(x"); x" � y"" ;X�� � 0and max�F �y"; v(y"); x" � y"" ; Y � ; B �y"; v(y"); x" � y"" ; Y �� � 0:However, even if we suppose that (3:21) holds for F and B \in 
", we annotget any ontradition whenF �x"; u(x"); x" � y"" ;X� � 0 � B �y"; v(y"); x" � y"" ; Y �or B �x"; u(x"); x" � y"" ;X� � 0 � F �y"; v(y"); x" � y"" ; Y � :It seems impossible to avoid this diÆulty as long as we use jx� yj2=(2") as\test funtions". 63



Our plan to go beyond this diÆulty is to �nd new test funtions �"(x; y)(instead of jx� yj2=(2")) so that the funtion (x; y)! u(x)� v(y)��"(x; y)attains its maximum over 
 � 
 at an interior point (x"; y") 2 
 � 
. Tothis end, sine we will use several \perturbation" tehniques, we suppose twohypotheses on F : First, we shall suppose the following ontinuity of F withrespet to (p;X)-variables.8><>: There is an !0 2 M suh thatjF (x; p;X)� F (x; q; Y )j � !0(jp� qj+ kX � Y k)for x 2 
; p; q 2 Rn; X; Y 2 Sn: (5:3)The next assumption is a bit stronger than the struture ondition (3.21):8>>>>>>>><>>>>>>>>:
There is !̂F 2 M suh thatif X; Y 2 Sn and � > 1 satisfy�3� I 00 I ! �  X 00 �Y ! � 3� I �I�I I ! ; thenF (y; p; Y )� F (x; p;X) � !̂F (jx� yj(1 + jpj+ �jx� yj))for x; y 2 
; p 2 Rn; X; Y 2 Sn: (5:4)

5.1 Dirihlet problemFirst, we onsider Dirihlet boundary value problems (Dirihlet problems forshort) in the above sense.Assuming that visosity sub- and supersolutions are ontinuous on �
,we will obtain the omparison priniple for them.We now reall the lassial Dirihlet problem( �u+ F (x;Du;D2u) = 0 in 
;u� g = 0 on �
: (5:5)Note that the Dirihlet problem of (5.5) in the visosity sense is as follows:subsolution() ( �u+ F (x;Du;D2u) � 0 in 
;minf�u+ F (x;Du;D2u); u� gg � 0 on �
;andsupersolution() ( �u+ F (x;Du;D2u) � 0 in 
;maxf�u+ F (x;Du;D2u); u� gg � 0 on �
:64



We shall suppose the following property on the shape of 
, whih maybe alled an \interior one ondition" (see Fig 5.1):( For eah z 2 �
; there are r̂; ŝ 2 (0; 1) suh thatx� rn(z) + r� 2 
 for x 2 
 \ Br̂(z); r 2 (0; r̂) and � 2 Bŝ(0): (5:6)Here and later, we denote by n(z) the unit outward normal vetor at z 2 �
.
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Theorem 5.1. Assume that � > 0, (5:3), (5:4) and (5:6) hold. Forg 2 C(�
), we let u and v : 
 ! R be, respetively, a visosity sub- andsupersolution of (5:5) suh thatlim infx2
!z u�(x) � u�(z) and lim supx2
!z v�(x) � v�(z) for z 2 �
: (5:7)Then, u� � v� in 
.Remark. Notie that (5.7) implies the ontinuity of u� and v� on �
.Proof. Suppose that max
(u� � v�) =: � > 0. We simply write u and vfor u� and v�, respetively.Case 1: max�
(u� v) = �. We hoose z 2 �
 suh that (u� v)(z) = �.We shall divide three ases:Case 1-1: u(z) > g(z). For "; Æ 2 (0; 1), where Æ > 0 will be �xed later,setting �(x; y) := (2"2)�1jx� y� "Æn(z)j2� Æjx� zj2, we let (x"; y") 2 
�
be the maximum point of �(x; y) := u(x)� v(y)� �(x; y) over 
� 
.65



Sine z�"Æn(z) 2 
 for small " > 0 by (5.6), �(x"; y") � �(z; z�"Æn(z))implies thatjx" � y" � "Æn(z)j22"2 � u(x")�v(y")�u(z)+v(z�"Æn(z))�Æjx"�zj2: (5:8)Sine jx"�y"j �M", where M := p2(max
 u�min
 v�u(z)+v(z)+1)1=2,for small " > 0, we may suppose that (x"; y") ! (x̂; x̂) and (x" � y")="! ẑfor some x̂ 2 
 and ẑ 2 Rn as " ! 0 along a subsequene (denoted by "again). Thus, from the ontinuity (5.7) of v at z 2 �
, (5.8) implies that� � u(x̂)� v(x̂)� Æjx̂� zj2;whih yields x̂ = z. Moreover, we havelim"!0 jx" � y" � "Æn(z)j2"2 = 0;whih implies that lim"!0 jx" � y"j" = Æ: (5:9)Furthermore, we note that y" = x" � "Æn(z) + o(") 2 
 beause of (5.6).Applying Lemma 3.6 with Proposition 2.7 to u(x)+ "�1Æhn(z); xi� Æjx�zj2 � 2�1Æ2 and v(y) + "�1Æhn(z); yi, we �nd X; Y 2 Sn suh that x" � y""2 � Æ"n(z) + 2Æ(x" � z); X + 2ÆI! 2 J2;+
 u(x"); (5:10) x" � y""2 � Æ"n(z); Y ! 2 J2;�
 v(y"); (5:11)and � 3"2  I OO I ! �  X OO �Y ! � 3"2  I �I�I I ! :Putting p" := "�2(x" � y")� Æ"�1n(z), by (5.3), we haveF (x"; p"; X)� F (x"; p" + 2Æ(x"� z); X + 2ÆI) � !0(2Æjx"� zj+ 2Æ): (5:12)Sine y" 2 
 and u(x") > g(x") for small " > 0 provided x" 2 �
, in viewof (5.10) and (5.11), we have�(u(x")� v(y")) � F (y"; p"; Y )� F (x"; p" + 2Æ(x" � z); X + 2ÆI):66



Combining this with (5.12) , by (5.4), we have�(u(x")�v(y")) � !0(2Æjx"�zj+2Æ)+!̂F  jx" � y"j 1 + jp"j+ jx" � y"j"2 !! :Sending "! 0 together with (5.9) in the above, we have�� � !0(2Æ) + !̂F (2Æ2);whih is a ontradition for small Æ > 0, whih only depends on � and �.Case 1-2: v(z) < g(z). To get a ontradition, we argue as above replaing�(x; y) by  (x; y) := (2"2)�1jx � y + "Æn(z)j2 � Æjx � zj2 so that x" = y" �"Æn(z) + o(") 2 
 for small " > 0. Note that we need here the ontinuity ofu on �
 in (5.7) while the other one in (5.7) is needed in Case 1-1. (See alsothe proof of Theorem 5.3 below.)Case 1-3: u(z) � g(z) and v(z) � g(z). This does not our beause 0 <� = (u� v)(z) � 0.Case 2: sup�
(u� v) < �. In this ase, using the standard test funtionjx� yj2=(2") (without Æjx � zj2 term), we an follow the same argument asin the proof of Theorem 3.7. 2Remark. Unfortunately, without assuming the ontinuity of visosity so-lutions on �
, the omparison priniple fails in general.In fat, setting F (x; r; p;X) � r and g(x) � �1, onsider the funtionu(x) := ( 0 for x 2 
;�1 for x 2 �
:Note that u� � 0 and u� � u in 
, whih are respetively a visosity sub- andsupersolution of G(x; u;Du;D2u) = 0 in 
. Therefore, this example showsthat the omparison priniple fails in general without assumption (5.7).5.2 State onstraint problemThe state onstraint boundary ondition arises in a typial optimal ontrolproblem. Thus, if the reader is more interested in the PDE theory, he/shemay skip Proposition 5.2 below, whih explains why we will adapt the \stateonstraint boundary ondition" in Theorem 5.3.67



To explain our motivation, we shall onsider Bellman equations of �rst-order.supa2Af�u� hg(x; a);Dui � f(x; a)g = 0 in 
:Here, we use the notations in setion 4.2.1.We introdue the following set of ontrols: For x 2 
,A(x) := f�(�) 2 A j X(t;x; �) 2 
 for t � 0g:We shall suppose that A(x) 6= ; for all x 2 
: (5:13)Also, we suppose that8><>: (1) supa2A �kf(�; a)kL1(
) + kg(�; a)kW 1;1(
)� <1;(2) supa2A jf(x; a)� f(y; a)j � !f (jx� yj) for x; y 2 
; (5:14)where !f 2M.We are now interested in the following the optimal ost funtional:u(x) := inf�2A(x) Z 10 e��tf(X(t;x; �); �(t))dt:Proposition 5.2. Assume that � > 0, (5:13) and (5:14) hold. Then, we have(1) u is a visosity subsolution ofsupa2Af�u� hg(x; a);Dui � f(x; a)g � 0 in 
;(2) u is a visosity supersolution ofsupa2Af�u� hg(x; a);Dui � f(x; a)g � 0 in 
:Remark. We often say that u satis�es the state onstraint boundary onditionwhen it is a visosity supersolution of\F (x; u;Du;D2u) � 0 in �
".Proof. In fat, at x 2 
, it is easy to verify that the dynami programmingpriniple (Theorem 4.4) holds for small T > 0. Thus, we may show Theorem 4.5replaing Rn by 
. 68



Hene, it only remains to show (2) on �
. Thus, suppose that there are x̂ 2 �
,� > 0 and � 2 C1(
) suh that (u� � �)(x̂) = 0 � (u� � �)(x) for x 2 
, andsupa2Af��(x̂)� hg(x̂; a);D�(x̂)i � f(x̂; a)g � �2�:Then, we will get a ontradition.Choose xk 2 
 \B1=k(x̂) suh that u�(x̂) + k�1 � u(xk) and j�(x̂)� �(xk)j <1=k. In view of (5.14), there is t0 > 0 suh that for any � 2 A(xk) and large k � 1,we have��(Xk(t))� hg(Xk(t); �(t));D�(Xk(t))i � f(Xk(t); �(t)) � �� for t 2 (0; t0);where Xk(t) := X(t;xk; �). Thus, multiplying e��t and then, integrating it over(0; t0), we have�(xk) � e��t0�(Xk(t0)) + Z t00 e��tf(Xk(t); �(t))dt � �� (1� e��t0):Sine we haveu(xk) � 2k + e��t0u(Xk(t0)) + Z t00 e��tf(Xk(t); �(t))dt � �� (1� e��t0);taking the in�mum over A(xk), we apply Theorem 4.4 to get0 � 2k � �� (1� e��t0);whih is a ontradition for large k. 2Motivated by this proposition, we shall onsider more general seond-orderellipti PDEs.Theorem 5.3. Assume that � > 0, (5:3), (5:4), (5:6) and (5:12) hold. Letu : 
! R be, respetively, a visosity sub- and supersolution of�u+ F (x;Du;D2u) � 0 in 
;and �v + F (x;Dv;D2v) � 0 in 
:Assume also that lim infx2
!z u�(x) � u�(z) for z 2 �
: (5:15)69



Then, u� � v� in 
.Remark. In 1986, Soner �rst treated the state onstraint problems for deter-ministi optimal ontrol (i:e: �rst-order PDEs) by the visosity solution approah.We note that we do not need ontinuity of v on �
 while we need it forDirihlet problems. For further disussion on the state onstraint problems, werefer to Ishii-Koike (1996).We also note that the proof below is easier than that for Dirihlet problemsin setion 5.1 beause we only need to avoid the boundary ondition for visositysubsolutions.Proof. Suppose that max
(u� � v�) =: � > 0. We shall write u and v for u�and v�, respetively, again.We may suppose that max�
(u � v) = � sine otherwise, we an use thestandard proedure to get a ontradition.Now, we proeed the same argument in Case 1-2 in the proof of Theorem 5.1(although it is not preisely written).For "; Æ > 0, setting �(x; y) := (2"2)�1jx� y+ "Æn(z)j2 + Æjx� zj2, where n isthe unit outward normal vetor at z 2 �
, we let (x"; y") 2 
� 
 the maximumpoint of u(x)� v(y)��(x; y) over 
�
. As in the proof of Theorem 3.4, we havelim"!0(x"; y") = (z; z) and lim"!0 jx" � y"j" = Æ: (5:16)Sine x" = y" � "Æn(z) + o(") 2 
 for small " > 0, in view of Lemma 3.6 withProposition 2.7, we an �nd X;Y 2 Sn suh that�x" � y""2 + Æ"n(z) + 2Æ(x" � z);X + 2ÆI� 2 J2;+
 u(x");�x" � y""2 + Æ"n(z); Y � 2 J2;�
 v(y");and � 3"2  I OO I ! �  X OO �Y ! � 3"2  I �I�I I ! :Setting p" := "�2(x" � y") + Æ"�1n(z), we have�(u(x")� v(y")) � F (y"; p"; Y )� F (x"; p" + 2Æ(x" � z);X + 2ÆI)� !0(2Æjx" � zj+ 2Æ) + !̂F �jx" � y"j�1 + jp"j+ jx" � y"j" �� :70



Hene, sending "! 0 with (5.16), we have�� � !0(2Æ) + !̂F (2Æ2);whih is a ontradition for small Æ > 0. 25.3 Neumann problemIn the lassial theory and modern theory for weak solutions in the distribu-tion sense, the (inhomogeneous) Neumann ondition is given byhn(x); Du(x)i � g(x) = 0 on �
;where n(x) denotes the unit outward normal vetor at x 2 �
.In Dirihlet and state onstraint problems, we have used a test funtionwhih fores one of x" and y" to be in 
. However, in the Neumann boundaryvalue problem (Neumann problem for short), we have to avoid the boundaryondition for visosity sub- and supersolutions simultaneously. Thus, we needa new test funtion di�erent from those in setions 5.1 and 5.2.We �rst de�ne the signed distane funtion from 
 by�(x) := ( inffjx� yj j y 2 �
g for x 2 
;� inffjx� yj j y 2 �
g for x 2 
:In order to obtain the omparison priniple for the Neumann problem,we shall impose a hypothesis on 
 (see Fig 5.2):8>>><>>>: (1) There is r̂ > 0 suh that
 � (Br̂(z + r̂n(z))) for z 2 �
:(2) There is a neighborhood N of �
 suh that� 2 C2(N); and D�(x) = n(x) for x 2 �
: (5:17)Remark. This assumption (1) is alled the \uniform exterior sphere on-dition". Sine jx� z � r̂n(z)j � r̂ for z 2 �
 and x 2 
, we havehn(z); x� zi � jx� zj22r̂ for z 2 �
 and x 2 
: (5:18)It is known that when �
 is \smooth" enough, (2) of (5.17) holds true.71



Fig 5.2

PSfrag replaements rn(z) �
r̂
z 
We shall onsider the inhomogeneous Neumann problem:( �u+ F (x;Du;D2u) = 0 in 
;hn(x); Dui � g(x) = 0 on �
: (5:19)Remember that we adapt the de�nition of visosity solutions of (5.19) forthe orresponding G in (5.2).Theorem 5.4. Assume that � > 0, (5:3), (5:4) and (5:17) hold. Forg 2 C(�
), we let u and v : 
! R be a visosity sub- and supersolution of(5:19), respetively.Then, u� � v� in 
.Remark. We note that we do not need any ontinuity of u and v on �
.Proof. As before, we write u and v for u� and v�, respetively.As in the proof of Theorem 3.7, we suppose that max
(u� v) =: � > 0.Also, we may suppose that max�
(u� v) = �.Let z 2 �
 be a point suh that (u� v)(z) = �. For small Æ > 0, we seethat the mapping x 2 
! u(x)� v(y)� Æjx� zj2 takes its strit maximumat z.For small "; Æ > 0, where Æ > 0 will be �xed later, setting �(x; y) :=(2")�1jx � yj2 � g(z)hn(z); x � yi + Æ(�(x) + �(y) + 2) + Æjx � zj2, we let(x"; y") 2 
 � 
 be the maximum point of �(x; y) := u(x) � v(y)� �(x; y)over 
 \N � 
 \N , where N is in (5.17).Sine �(x"; y") � �(z; z), as before, we may extrat a subsequene, whihis denoted by (x"; y") again, suh that (x"; y") ! (x̂; x̂). We may supposex̂ 2 �
. Sine �(x̂; x̂) � lim sup"!0�(x"; y"), we haveu(x̂)� v(x̂)� Æjx̂� zj2 � �;72



whih yields x̂ = z. Moreover, we havelim"!0 jx" � y"j2" = 0: (5:20)Applying Lemma 3.6 to u(x)� Æ(�(x)+ 1)� g(z)hn(z); xi� Æjx� zj2 and�v(y)� Æ(�(y) + 1) + g(z)hn(z); yi, we �nd X; Y 2 Sn suh that�p" + Æn(x") + 2Æ(x" � z); X + ÆD2�(x") + 2ÆI� 2 J2;+
 u(x"); (5:21)�p" � Æn(y"); Y � ÆD2�(y")� 2 J2;�
 v(y"); (5:22)where p" := "�1(x" � y") + g(z)n(z), and�3"  I 00 I ! �  X 00 �Y ! � 3"  I �I�I I ! :When x" 2 �
, by (5.18), we alulate in the following manner:hn(x"); Dx�(x"; y")i = hn(x"); p" + Æn(x") + 2Æ(x" � z)i� �jx" � y"j22r̂" + g(z)hn(x");n(z)i + Æ � 2Æjx" � zj:Hene, given Æ > 0, we see thathn(x"); Dx�(x"; y")i � g(x") � Æ2 for small " > 0:Thus, by (5.21), this yields�u(x") + F (x"; p" + Æn(x") + 2Æ(x" � z); X + ÆD2�(x") + 2ÆI) � 0: (5:23)Of ourse, if x" 2 
, then the above inequality holds from the de�nition.On the other hand, similarly, if y" 2 �
, thenhn(y");�Dy�(x"; y")i � g(y") � �Æ2 for small " > 0:Hene, by (5.22), we have�v(y") + F (y"; p" � Æn(y"); Y � ÆD2�(y")) � 0: (5:24)73



Using (5.3) and (5.4), by (5.23) and (5.24), we have�(u(x")� v(y")) � F (y"; p"; Y )� F (x"; p"; X) + 2!0(ÆM)� !̂F  jx" � y"j 1 + jp"j+ jx" � y"j" !!+ 2!0(ÆM);where M := 3 + supx2N\
(2jx � zj + jD2�(x)j). Sending " ! 0 with (5.20)in the above, we have �� � 2!0(ÆM);whih is a ontradition for small Æ > 0. 25.4 Growth ondition at jxj ! 1In the standard PDE theory, we often onsider PDEs in unbounded domains,typially, in Rn. In this subsetion, we present a tehnique to establish theomparison priniple for visosity solutions of�u + F (x;Du;D2u) = 0 in Rn: (5:25)We remind the readers that in the proofs of omparison results we alwayssuppose max
(u � v) > 0, where u and v are, respetively, a visosity sub-and supersolution. However, onsidering 
 := Rn, the maximum of u � vmight attain its maximum at \jxj ! 1". Thus, we have to hoose a testfuntion �(x; y), whih fores u(x)� v(y)� �(x; y) to takes its maximum ata point in a ompat set.For this purpose, we will suppose the linear growth ondition (for sim-pliity) for visosity solutions.We rewrite the struture ondition (3.21) for Rn:8>>>>>><>>>>>>: There is an !F 2 M suh that if X; Y 2 Sn and � > 1 satisfy�3� I 00 I ! �  X 00 �Y ! � 3� I �I�I I ! ;then F (y; �(x� y); Y )� F (x; �(x� y); X)� !F (jx� yj(1 + �jx� yj)) for x; y 2 Rn: (5:26)We will also need the Lipshitz ontinuity of (p;X)! F (x; p;X), whihis stronger than (5.3).( There is �0 > 0 suh that jF (x; p;X)� F (x; q; Y )j� �0(jp� qj+ kX � Y k) for x 2 Rn; p; q 2 Rn; X; Y 2 Sn: (5:27)74



Proposition 5.5. Assume that � > 0, (5:26) and (5:27) hold. Let u andv : Rn ! R be, respetively, a visosity sub- and supersolution of (5:25).Assume also that there is C0 > 0 suh thatu�(x) � C0(1 + jxj) and v�(x) � �C0(1 + jxj) for x 2 Rn: (5:28)Then, u� � v� in Rn.Proof. We shall simply write u and v for u� and v�, respetively.For Æ > 0, we set �Æ := supx2Rn(u(x)� v(x)� 2Æ(1+ jxj2)). We note that(5.28) implies that there is zÆ 2 Rn suh that �Æ = u(zÆ)�v(zÆ)�2Æ(1+jzÆj2).Set � := lim supÆ!0 �Æ 2 R [ f1g.When � � 0, sine(u� v)(x) � 2Æ(1 + jxj2) + �Æ for Æ > 0 and x 2 Rn;we have u � v in Rn.Thus, we may suppose � 2 (0;1℄. Setting �Æ(x; y) := u(x) � v(y) �(2")�1jx � yj2 � Æ(1 + jxj2) � Æ(1 + jyj2) for "; Æ > 0, where Æ > 0 will be�xed later, in view of (5.28), we an hoose (x"; y") 2 Rn � Rn suh that�Æ(x"; y") = max(x;y)2Rn�Rn �Æ(x; y) � �Æ.As before, extrating a subsequene if neessary, we may suppose thatlim"!0 jx" � y"j2" = 0: (5:29)By Lemma 3.6 with Proposition 2.7, putting p" := (x" � y")=", we �ndX; Y 2 Sn suh that (p" + 2Æx"; X + 2ÆI) 2 J2;+u(x");(p" � 2Æy"; Y � 2ÆI) 2 J2;�v(y");and �3"  I OO I ! �  X OO �Y ! � 3"  I �I�I I ! :Hene, we have�(u(x")� v(y"))� F (y"; p" � 2Æy"; Y � 2ÆI)� F (x"; p" + 2Æx"; X + 2ÆI)� F (y"; p"; Y )� F (x"; p"; X) + 2Æ�0(2 + jx"j+ jy"j)� !F  jx" � y"j 1 + jx" � y"j" !!+ �Æ(2 + jx"j2 + jy"j2) + CÆ;75



where C = C(�0; �) > 0 is independent of "; Æ > 0. For the last inequality,we used \2ab � �a2 + ��1b2 for � > 0".Therefore, we have�� � !F  jx" � y"j 1 + jx" � y"j" !!+ CÆ:Sending " ! 0 in the above together with (5.29), we get �� � CÆ, whih isa ontradition for small Æ > 0. 2
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6 Lp-visosity solutionsIn this setion, we disuss the Lp-visosity solution theory for uniformlyellipti PDEs: F (x;Du;D2u) = f(x) in 
; (6:1)where F : 
�Rn�Sn ! R and f : 
! R are given. Sine we will use thefat that u + C (for a onstant C 2 R) satis�es the same (6.1), we supposethat F does not depend on u itself. Furthermore, to ompare with lassialresults, we prefer to have the inhomogeneous term (the right hand side of(6.1)).The aim in this setion is to obtain the a priori estimates for Lp-visositysolutions without assuming any ontinuity of the mapping x ! F (x; q;X),and then to establish an existene result of Lp-visosity solutions for Dirihletproblems.Remark. In general, without the ontinuity assumption of x! F (x; p;X),even if X ! F (x; p;X) is uniformly ellipti, we annot expet the unique-ness of Lp-visosity solutions. Beause Nadirashvili (1997) gave a ounter-example of the uniqueness.6.1 A brief historyLet us simply onsider the Poisson equation in a \smooth" domain 
 withzero-Dirihlet boundary ondition:( �4u = f in 
;u = 0 on �
: (6:2)In the literature of the regularity theory for uniformly ellipti PDEs ofseond-order, it is well-known that\if f 2 C�(
) for some � 2 (0; 1), then u 2 C2;�(
)". (6:3)Here, C�(U) (for a set U � Rn) denotes the set of funtions f : U ! R suhthat supx2U jf(x)j+ supx;y2U;x6=y jf(x)� f(y)jjx� yj� <1:
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Also, Ck;�(U), for an integer k � 1, denotes the set of funtions f : U ! Rso that for any multi-index � = (�1; : : : ; �n) 2 f0; 1; 2; : : :gn with j�j :=Pni=1 �i � k, D�f 2 C�(U), whereD�f := �j�jf�x�11 � � ��x�nn :These funtion spaes are alled H�older ontinuous spaes and the impliationin (6.3) is alled the Shauder regularity (estimates). Sine the PDE in(6.2) is linear, the regularity result (6.3) may be extended to\if f 2 Ck;�(
) for some � 2 (0; 1), then u 2 Ck+2;�(
)". (6:4)Moreover, we obtain that (6.4) holds for the following PDE:�trae(A(x)D2u(x)) = f(x) in 
; (6:5)where the oeÆient A(�) 2 C1(
; Sn) satis�es that�j�j2 � hA(x)�; �i � �j�j2 for � 2 Rn and x 2 
:Furthermore, we an obtain (6.4) even for linear seond-order uniformlyellipti PDEs if the oeÆients are smooth enough.Besides the Shauder estimates, we know a di�erent kind of regularityresults: For a solution u of (6.5), and an integer k 2 f0; 1; 2; : : :g,\if f 2 W k;p(
) for some p > 1; then u 2 W k+2;p(
)". (6:6)Here, for an open set O � Rn, we say f 2 Lp(O) if jf jp is integrable in O,and f 2 W k;p(O) if for any multi-index � with j�j � k, D�f 2 Lp(O). Notiethat Lp(
) = W 0;p(
).This (6.6) is alled the Lp regularity (estimates). For a later on-veniene, for p � 1, we reall the standard norms of Lp(O) and W k;p(O),respetively:kukLp(O) := �ZO ju(x)jpdx�1=p ; and kukW k;p(O) := Xj�j�k kD�ukLp(O):In Appendix, we will use the quantity kukLp(
) even for p 2 (0; 1) althoughthis is not the \norm" (i:e: the triangle inequality does not hold).78



We refer to [13℄ for the details on the Shauder and Lp regularity theoryfor seond-order uniformly ellipti PDEs.As is known, a diÆulty ours when we drop the smoothness of Aij.An extreme ase is that we only suppose that Aij are bounded (possiblydisontinuous, but still satisfy the uniform elliptiity). In this ase, what anwe say about the regularity of \solutions" of (6.5) ?The extreme ase for PDEs in divergene form is the following:� nXi;j=1 ��xi  Aij(x) �u�xj (x)! = f(x) in 
: (6:7)De Giorgi (1957) �rst obtained H�older ontinuity estimates on weak so-lutions of (6.7) in the distribution sense; for any � 2 C10 (
),Z
 (hA(x)Du(x); D�(x)i � f(x)�(x)) dx = 0:Here, we setC10 (
) := ( � : 
! R ����� �(�) is in�nitely many times di�erentiable;and supp � is ompat in 
 ) :We refer to [14℄ for the details of De Giorgi's proof and, a di�erent proofby Moser (1960).Conerning the orresponding PDE in nondivergene form, by a stohas-ti approah, Krylov-Safonov (1979) �rst showed the H�older ontinuity esti-mates on \strong" solutions of�trae(A(x)D2u(x)) = f(x) in 
: (6:8)Afterward, Trudinger (1980) (see [13℄) gave a purely analyti proof for it.Sine these results appeared before the visosity solution was born, theyould only deal with strong solutions, whih satisfy PDEs in the a:e: sense.In 1989, Ca�arelli proved the same H�older estimate for visosity solutionsof fully nonlinear seond-order uniformly ellipti PDEs.To show H�older ontinuity of solutions, it is essential to prove the follow-ing \Harnak inequality" for nonnegative solutions. In fat, to prove theHarnak inequality, we split the proof into two parts:79



weak Harnak inequalityfor \super"solutionsloal maximum priniplefor \sub"solutions
9>>>>>>=>>>>>>; =) Harnak inequalityfor \solutions"In setion 6.4, we will show that Lp-visosity solutions satisfy the (inte-rior) H�older ontinuous estimates.6.2 De�nition and basi fatsWe �rst reall the de�nition of Lp-strong solutions of general PDEs:F (x; u;Du;D2u) = f(x) in 
: (6:9)We will use the following funtion spae:W 2;plo (
) := fu : 
! R j �u 2 W 2;p(
) for all � 2 C10 (
)g:Throughout this setion, we suppose at leastp > n2so that u 2 W 2;plo (
) has the seond-order Taylor expansion at almost allpoints in 
, and that u 2 C(
).De�nition. We all u 2 C(
) an Lp-strong subsolution (resp., super-solution, solution) of (6.9) if u 2 W 2;plo (
), andF (x; u(x); Du(x); D2u(x)) � f(x) (resp., � f(x); = f(x)) a:e: in 
:Now, we present the de�nition of Lp-visosity solutions of (6.9).De�nition. We all u 2 C(
) an Lp-visosity subsolution (resp., su-persolution) of (6.9) if for � 2 W 2;plo (
), we havelim"!0 ess: infB"(x) �F (y; u(y); D�(y); D2�(y))� f(y)� � 080



 resp. lim"!0 ess: supB"(x) �F (y; u(y); D�(y); D2�(y))� f(y)� � 0!provided that u� � takes its loal maximum (resp., minimum) at x 2 
.We all u 2 C(
) an Lp-visosity solution of (6.9) if it is both an Lp-visosity sub- and supersolution of (6.9).Remark. Although we will not expliitly utilize the above de�nition, wereall the de�nition of ess: supA and ess: infA of h : A ! R, where A � Rnis a measurable set:ess: supA h(y) := inffM 2 R j h �M a:e: in Ag;and ess: infA h(y) := supfM 2 R j h �M a:e: in Ag:Coming bak to (6.1), we give a list of assumptions on F : 
�Rn�Sn !R: 8><>: (1) F (x; 0; O) = 0 for x 2 
;(2) x! F (x; q;X) is measurable for (q;X) 2 Rn � Sn;(3) F is uniformly ellipti. (6:10)We reall the uniform elliptiity ondition of X ! F (x; q;X) with the on-stants 0 < � � � from setion 3.1.2.For the right hand side f : 
! R, we suppose thatf 2 Lp(
) for p � n: (6:11)We will often suppose the Lipshitz ontinuity of F with respet to q 2Rn;( there is � � 0 suh that jF (x; q;X)� F (x; q0; X)j � �jq � q0jfor (x; q; q0; X) 2 
�Rn �Rn � Sn: (6:12)Remark.We note that (1) in (6.10) and (6.12) imply that F has the lineargrowth in Du; jF (x; q; O)j � �jqj for x 2 
 and q 2 Rn:Remark. We note that when x ! F (x; q;X) and x ! f(x) are ontinu-ous, the de�nition of Lp-visosity subsolution (resp., supersolution) of (6.1)81



oinides with the standard one under assumption (6.10) and (6.12). For aproof, we refer to a paper by Ca�arelli-Crandall-Koan-�Swi�eh [5℄.In this book, we only study the ase of (6.11) but most of results an beextended to the ase when p > p? = p?(�; �; n) 2 (n=2; n), where p? is theso-alled Esauriaza's onstant (see the referenes in [4℄).The following proposition is obvious but it will be very onvenient tostudy Lp-visosity solutions of (6.1) under assumptions (6.10), (6.11) and(6.12).Proposition 6.1. Assume that (6:10), (6:11) and (6:12) hold. If u 2C(
) is an Lp-visosity subsolution (resp., supersolution) of (6:1), then it isan Lp-visosity subsolution (resp., supersolution) ofP�(D2u)� �jDuj � f in 
�resp., P+(D2u) + �jDuj � f in 
� :We reall the Aleksandrov-Bakelman-Pui (ABP for short) maximumpriniple, whih will play an essential role in this setion (and also Appendix).To this end, we introdue the notion of \upper ontat sets": For u :O! R, we set�[u;O℄ := ( x 2 O ����� there is p 2 Rn suh thatu(y) � u(x) + hp; y � xi for all y 2 O ) :Proposition 6.2. (ABP maximum priniple) For � � 0, there is C0 :=C0(�; �; n; �; diam(
)) > 0 suh that if for f 2 Ln(
), u 2 C(
) is anLn-visosity subsolution (resp., supersolution) ofP�(D2u)� �jDuj � f in 
+[u℄(resp., P+(D2u) + �jDuj � f in 
+[�u℄);then max
 u � max�
 u+ + diam(
)C0kf+kLn(�[u;
℄\
+[u℄)�resp., max
 (�u) � max�
 (�u)+ + diam(
)C0kf�kLn(�[�u;
℄\
+[�u℄)� ;82
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where 
+[u℄ := fx 2 
 j u(x) > 0g:The next proposition is a key tool to study Lp-visosity solutions, parti-ularly, when f is not supposed to be ontinuous. The proof will be given inAppendix.Proposition 6.3. Assume that (6:11) holds for p � n. For any � � 0,there are an Lp-strong subsolution u and an Lp-strong supersolution v 2C(B1) \W 2;plo (B1), respetively, of( P+(D2u) + �jDuj � f in B1;u = 0 on �B1; and ( P�(D2v)� �jDvj � f in B1;v = 0 on �B1:Moreover, we have the following estimates: for w = u or w = v, and smallÆ 2 (0; 1), there is Ĉ = Ĉ(�; �; n; �; Æ) > 0 suh thatkwkW 2;p(BÆ) � ĈÆkfkLp(B1):Remark. In view of the proof (Step 2) of Proposition 6.2, we see that�Ckf�kLn(B1) � w � Ckf+kLn(B1) in B1, where w = u; v.6.3 Harnak inequalityIn this subsetion, we often use the ubeQr(x) for r > 0 and x =t(x1; : : : ; xn) 2Rn; Qr(x) := fy =t(y1; : : : ; yn) j jxi � yij < r=2 for i = 1; : : : ; ng;83



and Qr := Qr(0). Notie thatBr=2(x) � Qr(x) � Brpn=2(x) for r > 0:We will prove the next two propositions in Appendix.Proposition 6.4. (Weak Harnak inequality) For � � 0, there are p0 =p0(�; �; n; �) > 0 and C1 := C1(�; �; n; �) > 0 suh that if u 2 C(B2pn) is anonnegative Lp-visosity supersolution ofP+(D2u) + �jDuj � 0 in B2pn;then we have kukLp0(Q1) � C1 infQ1=2 u:Remark. Notie that p0 might be smaller than 1.Proposition 6.5. (Loal maximum priniple) For � � 0 and q > 0,there is C2 = C2(�; �; n; �; q) > 0 suh that if u 2 C(B2pn) is an Lp-visositysubsolution of P�(D2u)� �jDuj � 0 in B2pn;then we have supQ1 u � C2ku+kLq(Q2):Remark. Notie that we do not suppose that u � 0 in Proposition 6.5.6.3.1 Linear growthThe next orollary is a diret onsequene of Propositions 6.4 and 6.5.Corollary 6.6. For � � 0, there is C3 = C3(�; �; n; �) > 0 suh that ifu 2 C(B2pn) is a nonnegative Lp-visosity sub- and supersolution ofP�(D2u)� �jDuj � 0 and P+(D2u) + �jDuj � 0 in B2pn;respetively, then we have supQ1 u � C3 infQ1 u:84



In order to treat inhomogeneous PDEs, we will need the following orol-lary:Corollary 6.7. For � � 0 and f 2 Lp(B3pn) with p � n, there isC4 = C4(�; �; n; �) > 0 suh that if u 2 C(B3pn) is a nonnegative Lp-visosity sub- and supersolution ofP�(D2u)� �jDuj � f and P+(D2u) + �jDuj � f in B2pn;respetively, then we havesupQ1 u � C4 �infQ1 u+ kfkLp(B3pn)� :Proof.Aording to Proposition 6.3, we �nd v; w 2 C(B3pn)\W 2;plo (B3pn)suh that ( P+(D2v) + �jDvj � �f+ a:e: in B3pn;v = 0 on �B3pn;and ( P�(D2w)� �jDwj � f� a:e: in B3pn;w = 0 on �B3pn:In view of Proposition 6.3 and its Remark, we an hoose Ĉ = Ĉ(�; �; n; �) >0 suh that0 � �v � Ĉkf+kLp(B3pn) in B3pn; kvkW 2;p(B2pn) � Ĉkf+kLp(B3pn);and0 � w � Ĉkf�kLp(B3pn) in B3pn; kwkW 2;p(B2pn) � Ĉkf�kLp(B3pn):Sine v; w 2 W 2;p(B2pn), it is easy to verify that u1 := u + v andu2 := u+ w are, respetively, an Lp-visosity sub- and supersolution ofP�(D2u1)� �jDu1j � 0 and P+(D2u2) + �jDu2j � 0 in B2pn:Sine v � 0 in B3pn, applying Proposition 6.5 to u1, for any q > 0, we �ndC2(q) > 0 suh thatsupQ1 u � supQ1 u1 + Ĉkf+kLp(B3pn)� C2(q)k(u1)+kLq(Q2) + Ĉkf+kLp(B3pn)� C2(q)kukLq(Q2) + Ĉkf+kLp(B3pn): (6:13)85



On the other hand, applying Proposition 6.4 to u2, there is p0 > 0 suhthatkukLp0(Q2) � ku2kLp0 (Q2) � C1 infQ1 u2 � C1 �infQ1 u+ Ĉkf�kLp(B3pn)� : (6:14)Therefore, ombining (6.14) with (6.13) for q = p0, we an �nd C4 > 0 suhthat the assertion holds. 2Corollary 6.8. (Harnak inequality, �nal version) Assume that (6:10),(6:11) and (6:12) hold. If u 2 C(
) is an Lp-visosity solution of (6:1), andif B3pnr(x) � 
 for r 2 (0; 1℄, thensupQr(x) u � C4  infQr(x) u+ r2�np kfkLp(
)! ;where C4 > 0 is the onstant in Corollary 6.7.Proof. By translation, we may suppose that x = 0.Setting v(x) := u(rx) for x 2 B3pn, we easily see that v is an Lp-visositysubsolution and supersolution ofP�(D2v)� �jDvj � r2f̂ and P+(D2v) + �jDvj � �r2f̂ ; in B3pn;respetively, where f̂(x) := f(rx). Note that kf̂kLp(B3pn) = r�np kfkLp(B3pnr).Applying Corollary 6.7 to v and then, resaling v to u, we onlude theassertion. 26.3.2 Quadrati growthHere, we onsider the ase when q ! F (x; q;X) has quadrati growth. Werefer to [10℄ for appliations where suh quadrati nonlinearity appears.We present a version of the Harnak inequality when F has a quadratigrowth in Du in plae of (6.12);( there is � � 0 suh that jF (x; q;X)� F (x; q0; X)j� �(jqj+ jq0j)jq � q0j for (x; q; q0; X) 2 
�Rn �Rn � Sn; (6:15)whih together with (1) of (6.10) implies thatjF (x; q; O)j � �jqj2 for (x; q) 2 
�Rn:86



The assoiated Harnak inequality is as follows:Theorem 6.9. For � � 0 and f 2 Lp(B3pn) with p � n, there isC5 = C5(�; �; n; �) > 0 suh that if u 2 C(B3pn) is a nonnegative Lp-visosity sub- and supersolution ofP�(D2u)� �jDuj2 � f and P+(D2u) + �jDuj2 � f in B3pn;respetively, then we havesupQ1 u � C5e 2�� M �infQ1 u+ kfkLp(B3pn)� ;where M := supB3pn u.Proof. Set � := �=�. Fix any Æ 2 (0; 1).We laim that v := e�u � 1 and w := 1 � e��u are, respetively, a non-negative Lp-visosity sub- and supersolution ofP�(D2v) � �(e�M + Æ)f+ and P+(D2w) � ��(1 + Æ)f� in B3pn:We shall only prove this laim for v sine the other for w an be obtainedsimilarly.Choose � 2 W 2;plo (B3pn) and suppose that u�� attains its loal maximumat x 2 B3pn. Thus, we may suppose that v(x) = �(x) and v � � in Br(x),where B2r(x) � B3pn. Note that 0 � v � e�M � 1 in B3pn.For any Æ 2 (0; 1), in view of W 2;p(Br(x)) � C�0(Br(x)) with some�0 2 (0; 1), we an hoose "0 2 (0; r) suh that�Æ � � � v + Æ in B"0(x):Setting  (y) := ��1 log(�(y) + 1) for y 2 B"0(x) (extending  2 W 2;p inB3pn nB"0(x) if neessary), we havelim"!0 ess infB"(x) �P�(D2 )� �jD j2 � f+� � 0:Sine D = D��(�+ 1) and D2 = D2��(�+ 1) � D�
D��(�+ 1)2 ;87



the above inequality yieldslim"!0 ess infB"(x) P�(D2�)�(�+ 1) � f+! � 0:Sine 0 < 1� Æ � �+ 1 � e�M + Æ in B"0(x), we havelim"!0 ess infB"(x) �P�(D2�)� �(e�M + Æ)f+� � 0:Sine �u � v � �ue�M and �ue��M � w � �u, using the same argumentto get (6.13) and (6.14), we havesupQ1 u � 1� supQ1 v � C6 nkvkLp0(Q2) + (e�M + Æ)kf+kLp(B3pn)o� C7 ne2�MkwkLp0(Q2) + (e�M + Æ)kf+kLp(B3pn)o� C8 �e2�M infQ1 w + (e2�M + Æ)kfkLp(B3pn)�� C9e2�M �infQ1 u+ (1 + Æ)kfkLp(B3pn)� :Sine Ck (k = 6; : : : ; 9) are independent of Æ > 0, sending Æ ! 0, we onludethe proof. 2Remark. We note that the same argument by using two di�erent trans-formations for sub- and supersolutions as above an be found in [14℄ foruniformly ellipti PDEs in divergene form with the quadrati nonlinearity.6.4 H�older ontinuity estimatesIn this subsetion, we show how the Harnak inequality implies the H�olderontinuity.Theorem 6.10. Assume that (6:10), (6:11) and (6:12) hold. For eahompat set K � 
, there is � = �(�; �; n; �; p; dist(K; �
); kfkLp(
)) 2(0; 1) suh that if u 2 C(
) is an Lp-visosity solution of (6:1), then there isĈ = Ĉ(�; �; n; �; p; dist(K; �
);max
 juj; kfkLp(
)) > 0ju(x)� u(y)j � Ĉjx� yj� for x; y 2 K:Remark. We notie that � is independent of sup
 juj.88



In our proof below, we may relax the dependene max
 juj in Ĉ bysupfju(x)j j dist(x;K) < "g for small " > 0:Proof. Setting r0 := minf1;dist(K; �
)=(3pn)g > 0, we may supposethat there is C4 > 1 suh that if w 2 C(
) is a nonnegative Lp-visositysub- and supersolution ofP�(D2w)� �jDwj � f and P+(D2w) + �jDwj � f in 
;respetively, then we see that for any r 2 (0; r0℄ and x 2 K (i:e: B3pnr(x) �
), supQr(x)w � C4  infQr(x)w + r2�np kfkLp(
)! :For simpliity, we may suppose x = 0 2 K.Now, we setM(r) := supQr u; m(r) := infQr u and os(r) :=M(r)�m(r):It is suÆient to �nd C > 0 and � 2 (0; 1) suh thatM(r)�m(r) � Cr� for small r > 0:We denote by S(r) the set of all nonnegative w 2 C(B3pnr), whih is,respetively, an Lp-visosity sub- and supersolution ofP�(D2w)� �jDwj � jf j and P+(D2w) + �jDwj � �jf j in B3pnr:Setting v1 := u�m(r) and w1 :=M(r)�u, we see that v1 and w1 belongto S(r). Hene, setting C10 := maxfC4kfkLp(
); C4; 4g > 3, we havesupQr=2 v1 � C10  infQr=2 v1 + r2�np! and supQr=2w1 � C10  infQr=2w1 + r2�np! :Thus, setting � := 2� np > 0, we haveM(r=2)�m(r) � C10 �m(r=2)�m(r) + (r=2)�� ;M(r)�m(r=2) � C10 �M(r)�M(r=2) + (r=2)�� :89



Hene, adding these inequalities, we have(C10 + 1)(M(r=2)�m(r=2)) � (C10 � 1)(M(r)�m(r)) + 2C10(r=2)�:Therefore, setting � := (C10�1)=(C10+1) 2 (1=2; 1) and C11 := 2C10=(C10+1), we see that os(r=2) � �os(r) + C11(r=2)�:Moreover, hanging r=2k�1 for integers k � 2, we haveos(r=2k) � �kos(r) + C11r� kXj=1 2��j� �kos(r0) + C112� � 1r� � C12(�k + r�);where C12 := maxfos(r0); C11=(2� � 1)g.For r 2 (0; r0), by setting s = r�, where � = log �=(log ��� log 2) 2 (0; 1),there is a unique integer k � 1 suh thats2k � r < s2k�1 ;whih yields log(s=r)log 2 � k < log(s=r)log 2 + 1:Hene, realling � 2 (1=2; 1), we haveos(r) � os(s=2k�1) � C12(�k + (2s)�) � 2�C12 ��(��1) log r= log 2 + r��� :Setting � := (�� 1) log �= log 2 2 (0; 1) (beause � 2 (1=2; 1)), we have�(��1) log r= log 2 = r� and r�� = r�:Thus, setting C13 := 2�C12, we haveos(r) � C13r�: 2 (6:16)Remark. We note that we may derive (6.16) when p > n=2 by taking� = 2� np > 0.We shall give the orresponding H�older ontinuity for PDEs with quadratinonlinearity (6.15). Sine we an use the same argument as in the proof of90



Theorem 6.1 using Theorem 6.9 instead of Corollaries 6.7 and 6.8, we omitthe proof of the following:Corollary 6.11. Assume that (6:10), (6:11) and (6:15) hold. For eahompat set K � 
, there are Ĉ = Ĉ(�; �; n; �; p; dist(K; �
); sup
 juj) > 0and � = �(�; �; n; �; p; dist(K; �
); sup
 juj) 2 (0; 1) suh that if an Lp-visosity solution u 2 C(
) of (6:1), then we haveju(x)� u(y)j � Ĉjx� yj� for x; y 2 K:Remark. Note that both of � and Ĉ depend on sup
 juj in this quadratiase.6.5 Existene resultFor the existene of Lp-visosity solutions of (6.1) under the Dirihlet ondition,we only give an outline of proof, whih was �rst shown in a paper by Crandall-Koan-Lions-�Swi�eh in [7℄ (1999).Theorem 6.12. Assume that (6:10), (6:11) and (6:12) hold. Assume also that(1) of (5:17) holds.For given g 2 C(�
), there is an Lp-visosity solution u 2 C(
) of (6:1) suhthat u(x) = g(x) for x 2 �
: (6:17)Remark. We may relax assumption (1) of (5.17) so that the assertion holds for
 whih may have some \onave" orners. Suh a ondition is alled \uniformexterior one ondition".Sketh of proof.Step1: We �rst solve approximate PDEs, whih have to satisfy a suÆientondition in Step 3; instead of (6.1), under (6.17), we onsiderFk(x;Du;D2u) = fk in 
; (6:18)where \smooth" Fk and fk approximate F and f , respetively. In fat, Fk and fkare given by F ��1=k and f ��1=k, where �1=k is the standard molli�er with respetto x-variables. We remark that F � �1=k means the onvolution of F (�; p;X) and�1=k. 91



We �nd a visosity solution uk 2 C(
) of (6.18) under (6.17) via Perron'smethod for instane. At this stage, we need to suppose the smoothness of �
 toonstrut visosity sub- and supersolutions of (6.18) with (6.17). Remember thatif F and f are ontinuous, then the notion of Lp-visosity solutions equals to thatof the standard ones (see Proposition 2.9 in [5℄).In view of (1) of (5.17) (i:e: the uniform exterior sphere ondition), we anonstrut visosity sub- and supersolutions of (6.18) denoted by � 2 USC(
) and� 2 LSC(
) suh that � = � = g on �
. To show this fat, we only note that wean modify the argument in Step 1 in setion 7.3.Step 2: We next obtain the a priori estimates for uk so that they onverge toa ontinuous funtion u 2 C(
), whih is the andidate of the original PDE.For this purpose, after having established the L1 estimates via Proposition6.2, we apply Theorem 6.10 (interior H�older ontinuity) to uk in Step 1 beause(6.10)-(6.12) hold for approximate PDEs with the same onstants �;�; �.We need a areful analysis to get the equi-ontinuity up to the boundary �
.See Step 1 in setion 7.3 again.Step 3: Finally, we verify that the limit funtion u is the Lp-visosity solutionvia the following stability result, whih is an Lp-visosity version of Proposition4.8.To state the result, we introdue some notations: For B2r(x) � 
 with r > 0and x 2 
, and � 2W 2;p(Br(x)), we setGk[�℄(y) := Fk(y;D�(y);D2�(y))� fk(y);and G[�℄(y) := F (y;D�(y);D2�(y))� f(y)for y 2 Br(x).Proposition 6.13. Assume that Fk and F satisfy (6:10) and (6:12) with�;� > 0 and � � 0. For f; fk 2 Lp(
) with p � n, let uk 2 C(
) be an Lp-visositysubsolution (resp., supersolution) of (6:18). Assume also that uk onverges to uuniformly on any ompat subsets of 
 as k ! 1, and that for any B2r(x) � 
with r > 0 and x 2 
, and � 2W 2;p(Br(x)),limk!1 k(G[�℄ �Gk[�℄)+kLp(Br(x)) = 0�resp., limk!1 k(G[�℄ �Gk[�℄)�kLp(Br(x)) = 0� :Then, u 2 C(
) is an Lp-visosity subsolution (resp., supersolution) of (6:1).92



Proof of Proposition 6.13. We only give a proof of the assertion for subsolu-tions.Suppose the ontrary: There are r > 0, " > 0, x 2 
 and � 2 W 2;p(B2r(x))suh that B3r(x) � 
, 0 = (u� �)(x) � (u� �)(y) for y 2 B2r(x), andu� � � �" in B2r(x) n Br(x); (6:19)and G[�℄(y) � " a:e: in B2r(x): (6:20)For simpliity, we shall suppose that r = 1 and x = 0.It is suÆient to �nd �k 2W 2;p(B2) suh that limk!1 supB2 j�kj = 0, andGk[�+ �k℄(y) � " a:e: in B2:Indeed, sine uk � (� + �k) attains its maximum over B2 at an interior pointz 2 B2 by (6.19), the above inequality ontradits the fat that uk is an Lp-visosity subsolution of (6.18).Setting h(x) := G[�℄(x) and hk(x) := Gk[�℄(x), in view of Proposition 6.3, wean �nd �k 2 C(B2) \W 2;plo (B2) suh that8>>><>>>: P�(D2�k)� �jD�kj � (h� hk)+ a:e: in B2;�k = 0 on �B2;0 � �k � Ck(h� hk)+kLp(B2) in B2;k�kkW 2;p(B1) � Ck(h� hk)+kLp(B2):We note that our assumption together with the third inequality in the above yieldslimk!1 supB2 j�kj = 0.Using (6.10), (6.12) and (6.20), we haveGk[�+ �k℄ � P�(D2�k)� �jD�kj+ hk� (h� hk)+ + "� (h� hk)� " a:e: in B2: 2
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7 AppendixIn this appendix, we present proofs of the propositions, whih appeared in theprevious setions. However, to prove them, we often need more fundamentalresults, for whih we only give referenes. One of suh results is the following\Area formula", whih will be employed in setions 7.1 and 7.2. We refer to[9℄ for a proof of a more general Area formula.Area formula� 2 C1(Rn;Rn);g 2 L1(Rn);A � Rn measurable 9>=>; =) Z�(A) jg(y)jdy � ZA jg(�(x))jjdet(D�(x))jdxWe note that the Area formula is a hange of variable formula whenjdet(D�)j may vanish. In fat, the equality holds if jdet(D�)j > 0 and � isinjetive.7.1 Proof of Ishii's lemmaFirst of all, we reall an important result by Aleksandrov. We refer to theAppendix of [6℄ and [10℄ for a \funtional analyti" proof, and to [9℄ for a\measure theoreti" proof.Lemma 7.1. (Theorem A.2 in [6℄) If f : Rn ! R is onvex, then fora:a: x 2 Rn, there is (p;X) 2 Rn � Sn suh thatf(x + h) = f(x) + hp; hi+ 12hXh; hi+ o(jhj2) as jhj ! 0:(i:e:, f is twie di�erentiable at a:a: x 2 Rn:)We next reall Jensen's lemma, whih is a version of the ABP maximumpriniple in 7.2 below.Lemma 7.2. (Lemma A.3 in [6℄) Let f : Rn ! R be semi-onvex(i:e: x ! f(x) + C0jxj2 is onvex for some C0 2 R). Let x̂ 2 Rn be a stritmaximum point of f . Set fp(x) := f(x)� hp; xi for x 2 Rn and p 2 Rn.Then, for r > 0, there are C1; Æ0 > 0 suh thatj�r;Æj � C1Æn for Æ 2 (0; Æ0℄;94



where�r;Æ := nx 2 Br(x̂) ���9p 2 BÆ suh that fp(y) � fp(x) for y 2 Br(x̂)o :Proof. By translation, we may suppose x̂ = 0.For integers m, we set fm(x) = f � �1=m(x), where �1=m is the molli�er.Note that x! fm(x) + C0jxj2 is onvex.Setting�mr;Æ = nx 2 Br ���9p 2 BÆ suh that fmp (y) � fmp (x) for y 2 Bro ;where fmp (x) = fm(x)�hp; xi, we laim that there are C1; Æ0 > 0, independentof large integers m, suh thatj�mr;Æj � C1Æn for Æ 2 (0; Æ0℄:We remark that this onludes the assertion. In fat, setting Am := [1k=m�kr;Æ,we have \1m=1Am � �r;Æ. Beause, for x 2 \1m=1Am, we an selet pk 2 BÆand mk suh that limk!1mk =1, andmaxBr fmkpk = fmkpk (x):Hene, sending k ! 1 (along a subsequene if neessary), we �nd p̂ 2 BÆsuh that maxBr fp̂ = fp̂(x), whih yields x 2 �r;Æ.Therefore, we haveC1Æn � limm!1 jAmj = j \1m=1 Aj � j�r;Æj:Now we shall prove our laim. First of all, we notie that x ! fm(x) +C0jxj2 is onvex.Sine 0 is the strit maximum of f , we �nd "0 > 0 suh that"0 = f(0)� maxB4r=3nBr=3 f:Fix p 2 BÆ0 , where Æ0 = "0=(3r). For m � 3=r, we note thatfm(x)� hp; xi � f(0)� "0 + Æ0r � f(0)� 2"03 in Br nB2r=3:95



On the other hand, for large m, we verify thatfm(0) � f(0)� !f(m�1) > f(0)� "03 ;where !f denotes the modulus of ontinuity of f . Hene, in view of theseobservations, for any p 2 BÆ0 , if maxBr fmp = fmp (x) for x 2 Br, then x 2 Br.In other words, we see thatBÆ = Dfm(�mr;Æ) for Æ 2 (0; Æ0℄:Thanks to the Area formula, we havejBÆj = ZDfm(�mr;Æ) dy � Z�mr;Æ jdetD2fmjdx � (2C0)nj�mr;Æj:Here, we have employed that �2C0I � D2fm � O in �mr;Æ. 2Although we an �nd a proof of the next proposition in [6℄, we reall theproof with a minor hange for the reader's onveniene.Proposition 7.3. (Lemma A.4 in [6℄) If f 2 C(Rm), B 2 Sm, � !f(�) + (�=2)j�j2 is onvex and max�2Rmff(�) � 2�1hB�; �ig = f(0), thenthere is an X 2 Sm suh that(0; X) 2 J2;+f(0) \ J2;�f(0) and � �I � X � B:Proof. For any Æ > 0, setting fÆ(�) := f(�)� 2�1hB�; �i� Æj�j2, we notiethat the semi-onvex fÆ attains its strit maximum at � = 0.In view of Lemmas 7.1 and 7.2, there are �Æ; qÆ 2 BÆ suh that � !fÆ(�) + hqÆ; �i has a maximum at �Æ, at whih f is twie di�erentiable.It is easy to see that Df(�Æ) ! 0 (as Æ ! 0) and, moreover, from theonvexity of � ! f(�) + (�=2)j�j2,��I � D2f(�Æ) � B + 2ÆI:Noting (Df(�Æ); D2f(�Æ)) 2 J2;+f(�Æ) \ J2;�f(�Æ), we onlude the assertionby taking the limit as Æ ! 0. 2We next give a \magi" property of sup-onvolutions. For the reader'sonveniene, we put the proof of [6℄. 96



Lemma 7.4. (Lemma A.5 in [6℄) For v 2 USC(Rn) with supRn v < 1and � > 0, we set v̂(�) := supx2Rn  v(x)� �2 jx� �j2! :For �; q 2 Rn, Y 2 Sn, and (q; Y ) 2 J2;+v̂(�), we have(q; Y ) 2 J2;+v(� + ��1q) and v̂(�) + jqj22� = v(� + ��1q):In partiular, if (0; Y ) 2 J2;+v̂(0), then (0; Y ) 2 J2;+v(0).Proof. For (q; Y ) 2 J2;+v̂(�), we hoose y 2 Rn suh thatv̂(�) = v(y)� �2 jy � �j2:Thus, from the de�nition, we see that for any x; � 2 Rn,v(x)� �2 j� � xj2 � v̂(�) � v̂(�) + hq; � � �i+12hY (� � �); � � �i+ o(j� � �j2)= v(y)� �2 jy � �j2 + hq; � � �i+12hY (� � �); � � �i+ o(j� � �j2):Taking � = x� y + � in the above, we have (q; Y ) 2 J2;+v(y).To verify that y = � + ��1q, putting x = y and � = � � "(�(� � y) + q)for " > 0 in the above again, we have"j�(� � y) + qj2 � o(");whih yield y = � + 1�q.When (0; Y ) 2 J2;+v̂(0), we an hoose (�k; qk; Yk) suh that limk!1(�k; v̂(�k); qk; Yk) =(0; v̂(0); 0; O), and (qk; Yk) 2 J2;+v̂(�k). Sine (qk; Yk) 2 J2;+v(�k + ��1qk)and v̂(�k) + (2�)�1jqkj2 = v(�k + ��1qk), sending k ! 1, we have (0; Y ) 2J2;+v(0). 2 97



Proof of Lemma 3.6. First of all, extending upper semi-ontinuous fun-tions u; w in 
 into Rn by �1 in Rn n
, we shall work in Rn�Rn insteadof 
� 
.By translation, we may suppose that x̂ = ŷ = 0, at whih u(x) + w(y)��(x; y) attains its maximum.Furthermore, replaing u(x), w(y) and �(x; y), respetively, byu(x)� u(0)� hDx�(0; 0); xi; w(y)� w(0)� hDy�(0; 0); yiand �(x; y)� �(0; 0)� hDx�(0; 0); xi � hDy�(0; 0); yi;we may also suppose that �(0; 0) = u(0) = w(0) = 0 and D�(0; 0) = (0; 0) 2Rn �Rn.Sine �(x; y) = *A2  xy ! ; xy !++o(jxj2+jyj2), where A := D2�(0; 0) 2S2n, for eah � > 0, we see that the mapping (x; y) ! u(x) + w(y) �12 *(A+ �I) xy ! ; xy !+ attains its (strit) maximum at 0 2 R2n.We will show the assertion for A+�I in plae of A. Then, sending � ! 0,we an onlude the proof. Therefore, we need to prove the following:Simpli�ed version of Ishii's lemma.For upper semi-ontinuous funtions u and w in Rn, we suppose thatu(x) + w(y)� *A2  xy ! ; xy !+ � u(0) + w(0) = 0 in Rn �Rn:Then, for eah � > 1, there are X; Y 2 Sn suh that (0; X) 2 J2;+u(0),(0; Y ) 2 J2;+w(0) and �(� + kAk) I OO I ! �  X OO Y ! � A+ 1�A2.Proof of the simpli�ed version of Lemma 3.6. Sine H�older's inequality im-plies *A xy ! ; xy !+ � * A+ 1�A2! �� ! ; �� !++(�+ kAk)(jx� �j2 + jy � �j2)for x; y; �; � 2 Rn and � > 0, setting � = �+ kAk, we haveu(x)� �2 jx� �j2 + w(y)� �2 jy � �j2 � 12 * A + 1�A2! �� ! ; �� !+ :98



Using the notation in Lemma 7.4, we denote by û and ŵ the sup-onvolutionof u and w, respetively, with the above � > 0. Thus, we haveû(�) + ŵ(�) � 12 * A+ 1�A2! �� ! ; �� !+ for all �; � 2 Rn:Sine û(0) � u(0) = 0 and ŵ(0) � w(0) = 0, the above inequality impliesû(0) = ŵ(0) = 0.In view of Proposition 7.3 with m = 2n, f(�; �) = û(�) + ŵ(�) andB = A+ ��1A2, there is Z 2 S2n suh that (0; Z) 2 J2;+f(0; 0)\ J2;�f(0; 0)and ��I � Z � B.Hene, from the de�nition of J2;�, it is easy to verify that there areX; Y 2Sn suh that (0; X) 2 J2;+û(0)\J2;�û(0), (0; Y ) 2 J2;+ŵ(0)\J2;�ŵ(0), andZ =  X OO Y ! :Applying the last property in Lemma 7.4 to û and ŵ, we see that(0; X) 2 J2;+u(0) and (0; Y ) 2 J2;+w(0): 27.2 Proof of the ABP maximum prinipleFirst of all, we remind the readers of our strategy in this and the next sub-setions.We �rst show that the ABP maximum priniple holds under f 2 Ln(
)\C(
) in Steps 1 and 2 of this subsetion. Next, using this fat, we estab-lish the existene of Lp-strong solutions of \Pui" equations in the nextsubsetion when f 2 Lp(
).Employing this existene result, in Step 3, we �nally prove Proposition6.2; the ABP maximum priniple when f 2 Ln(
).ABP maximum priniple for f 2 Ln(
) \ C(
) (Setion 7.2)+Existene of Lp-strong solutions of Pui equations (Setion 7.3)+ABP maximum priniple for f 2 Ln(
) (Setion 7.2)99



Proof of Proposition 6.2. We give a proof in [5℄ for the subsolution asser-tion of Proposition 6.2.By saling, we may suppose that diam(
) � 1.Setting r0 := max
 u�max�
 u+;we may also suppose that r0 > 0 sine otherwise, the onlusion is obvious.We �rst introdue the following notation: For u : 
! R and r � 0,�r := nx 2 
 ���9p 2 Br suh that u(y) � u(x) + hp; y � xi for y 2 
o :Realling the upper ontat set in setion 6.2, we note that�[u;
℄ = [r>0�r:Step 1: u 2 C2(
) \ C(
). We �rst laim that for r 2 (0; r0),( (i) Br = Du(�r);(ii) D2u � O in �r: (7:1)To show (i), for p 2 Br, we take x̂ 2 
 suh that u(x̂) � hp; x̂i =maxx2
(u(x) � hp; xi). Sine u(x) � u(x̂) � r < r0 for x 2 
, taking themaximum over 
, we have x̂ 2 
. Hene, we see p = Du(x̂), whih onludes(i).For x 2 �r, Taylor's formula yieldsu(y) = u(x) + hDu(x); y � xi+ 12hD2u(x)(y � x); y � xi+ o(jy � xj2):Hene, we have 0 � hD2u(x)(y � x); y � xi + o(jy � xj2), whih shows (ii).Now, we introdue funtions g�(p) := �jpjn=(n�1) + �n=(n�1)�1�n for � > 0.We shall simply write g for g�.Thus, for r 2 (0; r0), we see thatZDu(�r) g(p)dp � Z�r g(Du(x))jdet(D2u(x))jdx= Z�r �jDujn=(n�1) + �n=(n�1)�1�n jdetD2u(x)jdx:Realling (7.1), we utilize jdetD2uj � (�trae(D2u)=n)n in �r to �ndC > 0 suh thatZBr g(p)dp � C Z�r �jDujn=(n�1) + �n=(n�1)�1�n (�trae(D2u))ndx: (7:2)100



Thus, sine (�jDuj+f+)n � g(Du)�1(�n+��n(f+)n) by H�older's inequality,we have ZBr g(p)dp � C Z�r  �n +  f+� !n! dx: (7:3)On the other hand, sine (jpjn + �n)�1 � g(p), we havelog�� r��n + 1� � C ZBr 1jpjn + �ndp � C ZBr g(p)dp:Hene, noting �r � 
+[u℄ for r 2 (0; r0), by (7.3), we haver � � "exp(C Z�[u;
℄\
+[u℄  �n +  f+� !n! dx)� 1#1=n : (7:4)When kf+kLn(�[;
℄\
+[u℄) = 0, then sending �! 0, we get a ontradition.Thus, we may suppose that kf+kLn(�[;
℄\
+[u℄) > 0.Setting � := kf+kLn(�[u;
℄\
+[u℄) and r := r0=2, we an �nd C > 0,independent of u, suh that r0 � Ckf+kLn(�[u;
℄\
+[u℄).Remark. We note that we do not need to suppose f to be ontinuous inStep 1 while we need it in the next step.Step 2: u 2 C(
) and f 2 Ln(
) \ C(
). First of all, beause of f 2C(
), we remark that u is a \standard" visosity subsolution ofP�(D2u)� �jDuj � f in 
+[u℄:(See Proposition 2.9 in [5℄.)Let u" be the sup-onvolution of u for " > 0;u"(x) := supy2
 (u(y)� jx� yj22" ) :Note that u" is semi-onvex and thus, twie di�erentiable a:e: in Rn.We laim that for small " > 0, u" is a visosity subsolution ofP�(D2u")� �jDu"j � f " in 
"; (7:5)where f "(x) := supff+(y) j jx � yj � 2(kukL1(
)")1=2g and 
" := fx 2
+[u℄ j dist(x; �
+[u℄) > 2(kukL1(
)")1=2g. Indeed, for x 2 
" and (q;X) 2101



J2;+u"(x), hoosing x̂ 2 
 suh that u"(x) = u(x̂)� (2")�1jx� x̂j2, we easilyverify that jqj = "�1jx̂ � xj � 2qkukL1(
)=". Thus, by Lemma 7.4, we seethat (q;X) 2 J2;+u(x+ "q). Hene, we haveP�(X)� �jqj � f+(x+ "q) � f "(x):We note that for small " > 0, we may suppose thatr" := max
" u" �max�
" (u")+ > 0: (7:6)Here, we list some properties on upper ontat sets: For small Æ > 0, weset 
Æ := fx 2 
 j dist(x; �
) > Æg:Lemma 7.5. Let vÆ 2 C(
Æ) and v 2 C(
) satisfy that vÆ ! v uniformlyon any ompat sets in 
 as Æ ! 0. Assume that r̂ := max
 v�max�
 v+ > 0.Then, for r 2 (0; r̂), we have the following properties:8>>>>>>>><>>>>>>>>:
(1) �r[v;
℄is a ompat set in 
+[v℄;(2) lim supÆ!0 �r[vÆ;
Æ℄ � �r[v;
℄;(3) for small � > 0; there is Æ�suh that [0�Æ<Æ� �r[vÆ;
Æ℄ � �̂�r ;where �̂�r := fx 2 
 j dist(x;�r[v;
℄) < �g;(4) xk 2 
Æk ! x 2 
 as k !1; then; lim infk!1 vÆk(xk) � v(x):Proof of Lemma 7.5. To show (1), we �rst need to observe that for r 2(0; r̂), dist(�r[v;
℄; �
) > 0. Suppose the ontrary; if there is xk 2 �r[v;
℄suh that xk 2 
 ! x̂ 2 �
, then there is pk 2 Br suh that v(y) �v(xk) + hpk; y � xki for y 2 
. Hene, sending k!1, we havemax
 v �max�
 v+ � r < r̂;whih is a ontradition. Thus, we an �nd a ompat set K � 
 suh that�r[v;
℄ � K.Moreover, if v(x) � 0 for x 2 �r[v;
℄, then we get a ontradition:r̂ � max
 v � r < r̂:102



Next, hoose x 2 lim supÆ!0 �r[vÆ;
Æ℄. Then, for any k � 1, there areÆk 2 (0; 1=k) and pk 2 Br suh thatvÆk(y) � vÆk(x) + hpk; y � xi for y 2 
Æk :We may suppose pk ! p for some p 2 Br taking a subsequene if neessary.Sending k !1 in the above, we see that x 2 �r[v;
℄.If (3) does not hold, then there are �0 > 0, Æk 2 (0; 1=k) and xk 2�r[vÆk ;
Æk ℄n �̂�0r . We may suppose again that limk!1 xk = x̂ for some x̂ 2 
.When x̂ 2 �
, sine there is pk 2 Br suh that vÆk(y) � vÆk(xk)+ hpk; y�xkifor y 2 
, we have r̂ < r̂, whih is a ontradition. Thus, we may supposethat x̂ 2 
 and, then x̂ 2 �r[v;
℄. Thus, there is k0 � 1 suh that xk 2 �̂�0rfor k � k0, whih is a ontradition. 2For Æ > 0, we set u"Æ := u" � �Æ, where �Æ is the standard molli�er. We set~�";Ær := �r[u"Æ;
"℄ for r 2 (0; r"Æ), where r"Æ := max
" u"Æ�max�
"(u"Æ)+. Notiethat for small Æ > 0, r"Æ > 0.In view of the argument to derive (7.2) in Step 1, we haveZBr g(p)dp � C Z~�";Ær �jDu"Æjn=(n�1) + �n=(n�1)�1�n (�trae(D2u"Æ))ndxfor small r > 0.Also, by the same argument for (ii) in (7.1), we an show that D2u"Æ(x) �O in ~�";Ær . Furthermore, from the de�nition of u", we verify that �"�1I �D2u"Æ(x) in 
".Hene, sending Æ ! 0 with Lemma 7.5 (3), we haveZBr g(p)dp � C Z�r[u";
"℄ �jDu"jn=(n�1) + �n=(n�1)�1�n (�trae(D2u"))ndx� C Z�r[u";
"℄  �n +  f "� !n! dx:Therefore, sending "! 0 (again with Lemma 7.5 (3)), we obtain (7.4), whihimplies the onlusion.Remark. Using the ABP maximum priniple in Step 2 (i:e: f 2 C(
)), wean give a proof of Proposition 6.3, whih will be seen in setion 7.3. Thus,in Step 3 below, we will use Proposition 6.3.103



Step 3: u 2 C(
) and f 2 Ln(
). Let fk 2 C(
) be nonnegative fun-tions suh that kfk � f+kLn(
) ! 0 as k!1.In view of Proposition 6.3, we hoose �k 2 C(
) \W 2;nlo (
) suh that8><>: P+(D2�k) + �jD�kj = fk � f+ a:e: in 
;�k = 0 on �
;k�kkL1(
) � Ckfk � f+kLn(
):Setting wk := u+ �k �k�kkL1(
), we easily verify that wk is an Ln-visositysubsolution of P�(D2wk)� �jDwkj � fk in 
:Note that 
+[wk℄ � 
+[u℄.Thus, by Step 2, we havemax
 wk � max�
 wk + Ck(fk)+kLn(�r[wk;
℄\
+[u℄):Therefore, sending k !1 with Lemma 7.5 (2), we �nish the proof. 27.3 Proof of existene results for Pui equationsWe shall solve Pui equations under the Dirihlet ondition in 
. For sim-pliity of statemants, we shall treat the ase when 
 is a ball though we willneed the existene result in smooth domains later. To extend the result forgeneral 
 with smooth boundary, we only need to modify the funtion vz inthe argument below.For � � 0 and f 2 Lp(B1) with p � n,( P�(D2u)� �jDuj � f in B1;u = 0 on �B1; (7:7)and ( P+(D2u) + �jDuj � f in B1;u = 0 on �B1: (7:8)Note that the �rst estimate of (7.10) is valid by Proposition 6.2 when theinhomogeneous term is ontinuous.Sketh of proof. We only show the assertion for (7.8).Step 1: f 2 C1(B1). We shall onsider the ase when f 2 C1(B1).104



Set S�;� := fA := (Aij) 2 Sn j �I � A � �Ig. We an hoose a ountableset S0 := fAk := (Akij) 2 S�;�g1k=1 suh that S0 = S�;�.Noting that �jqj = maxfhb; qi j b 2 �B�g for q 2 Rn, we hoose B0 :=fbk 2 �B�g1k=1 suh that B0 = �B�.Aording to Evans' result in 1983, we an �nd lassial solutions uN 2C(
) \ C2(
) of8<: maxk=1;:::;N n�trae(AkD2u) + hbk; Duio = f in B1;u = 0 on �B1: (7:9)Moreover, we �nd � = �(") 2 (0; 1), C" > 0 (for eah " 2 (0; 1)) and C1 > 0,whih are independent of N � 1, suh thatkuNkL1(B1) � C1kfkLn(B1) and kuNkC2;�(B1�") � C": (7:10)Note that the �rst estimate of (7.10) is valid by Proposition 6.2 when theinhomogeneous term is ontinuous.More preisely, by the lassial omparison priniple, Proposition 3.3, wehave uN � u1 in B1: (7:11)Furthermore, we an onstrut a subsoluion of (7.9) for any N � 1 inthe following manner: Fix z 2 �B1. Set vz(x) := �(e��jx�2zj2 � e��), where�; � > 0 (independent of z 2 �B1) will be hosen later. We �rst note thatvz(z) = 0 and vz(x) � 0 for x 2 B1.Setting Lkw(x) := �trae(AkD2w(x)) + hbk; Dw(x)i, we verify thatLkvz(x) � 2��e��jx�2zj2(�n� 2��jx� 2zj2 + �jx� 2zj)� 2��e�9�(�n� 2��+ 3�):Thus, �xing � := (�n+3�+1)=(2�), we have Lkvz(x) � �2��e�9�. Hene,taking � > 0 large enough so that 2��e�9� � kfkL1(B1), we havemaxk=1;2;:::;N Lkvz(x) � f(x) in B1:Now, putting V (x) := supz2�B1 vz(x), in view of Theorem 4.2, we see thatV is a visosity subsolution ofmaxk=1;2;:::;N Lku(x)� f(x) � 0 in B1:105



Moreover, it is easy to hek that V �(x) = 0 for x 2 �B1. Thus, by Proposi-tion 3.3 again, we obtain thatV � uN in B1: (7:12)Therefore, in view of (7.10)-(7.12), we an hoose a sequene Nk andu 2 C2(B1) suh that limk!1Nk =1,(uNk; DuNk ; D2uNk)! (u;Du;D2u) uniformly in B1�"for eah " 2 (0; 1), and V � u � u1 in B1: (7:13)We note that (7.13) implies that u� = u� on �B1.By virtue of the stability result (Proposition 4.8), we see that u is avisosity solution of P+(D2u) + �jDuj � f = 0 in B1sine supk�1f�trae(AkX) + hbk; pig = P+(X) + �jpj. Hene, Theorem 3.9yields u 2 C(B1).Therefore, by Proposition 2.3, we see that u 2 C(B1) \ C2(B1) is alassial solution of (7.8).Step 2: f 2 Lp(B1). (Lemma 3.1 in [5℄) Choose fk 2 C1(B1) suh thatkfk � fkLp(
) ! 0 as k !1.Let uk 2 C(B1) \ C2(B1) be a lassial solution ofP+(D2u) + �jDuj � fk = 0 in B1suh that uk = 0 on �B1. Proposition 6.2 implies that �Ckf�k kLn(B1) � uk �Ckf+k kLp(B1) in B1.We �rst laim that fukg1k=1 is a Cauhy sequene in L1(B1). Indeed,sine (1) and (4) of Proposition 3.2 imply thatP�(D2(uj � uk))� �jD(uj � uk)j� P+(D2uj) + P�(�D2uk) + �jDujj � �jDukj= fj � fk� P+(D2uj)� P+(D2uk) + �jD(uj � uk)j� P+(D2(uj � uk)) + �jD(uj � uk)j;106



using Proposition 6.2 when the inhomogeneous term is ontinuous, wehave maxB1 juj � ukj � Ckfj � fkkLn(B1):Realling p � n, we thus havekuj � ukkL1(B1) � Ckfj � fkkLp(B1):Hene, we �nd u 2 C(B1) suh that uk onverges to u uniformly in B1 ask !1. Moreover, we see that �Ckf�kLp(B1) � u � Ckf+kLp(B1) in B1.Therefore, by the standard overing and limiting arguments with weaklyonvergene in W 2;p loally, it suÆes to �nd C > 0, independent of k � 1,suh that kukkW 2;p(B1=2) � C:Moreover, we see that �Ckf�kLp(B1) � u � Ckf+kLp(B1) in B1.For " 2 (0; 1=2), we selet � := �" 2 C2(B1) suh that8>>><>>>: (i) 0 � � � 1 in B1;(ii) � = 0 in B1 nB1�";(iii) � = 1 in B1�2";(iv) jD�j � C0"�1; jD2�j � C0"�2 in B1;where C0 > 0 is independent of " 2 (0; 1=2).Now, we reall Ca�arelli's result (1989) (see also [4℄): There is a universalonstant Ĉ > 0 suh thatkD2(�uk)kLp(B1�") � ĈkP+(D2(�uk))kLp(B1�"):Hene, we �nd C1 > 0 suh that for 0 < " < 1=4,kD2ukkLp(B1�2") � kD2(�uk)kLp(B1�") � ĈkP+(D2(�uk))kLp(B3=4)� C1 �kfkkLp(B1�") + "�1kDukkLp(B1�") + "�2kukkLp(B1�")�Multiplying "2 > 0 in the above, we get"2kD2ukkLp(B1�2") � C1(kfkkLp(B1) + �1(uk) + �0(uk));where �j(uk) := sup0<"<1=2 "jkDjukkLp(B1�") for j = 0; 1; 2.107



Therefore, in view of the \interpolation" inequality (see [13℄ for example),i:e: for any Æ > 0, there is CÆ > 0 suh that�1(uk) � Æ�2(uk) + CÆ�0(uk);we �nd C3 > 0 suh that�2(uk) � C3 �kfkkLp(B1) + �0(uk)� :On the other hand, sine we have L1-estimates for uk, we onlude theproof. 2Remark. It is possible to show that the uniform limit u in Step 2 isan Lp-visosity solution of (7.8) by Proposition 6.13. Moreover, sine it isknown that if Lp-visosity supersolution of (7.8) belongs to W 2;plo (B1), thenit is an Lp-strong supersolution (see [5℄), u satis�es P+(D2u)+�jDuj = f(x)a:e: in B1.7.4 Proof of the weak Harnak inequalityWe need a modi�ation of Lemma 4.1 in [4℄ sine our PDE (7.14) below hasthe �rst derivative term.Lemma 7.6. (f. Lemma 4.1 in [4℄) There are � 2 C2(B2pn) and� 2 C(B2pn) suh that8>>><>>>: (1) P�(D2�)� �jD�j � �� in B2pn;(2) �(x) � �2 for x 2 Q3;(3) �(x) = 0 for x 2 �B2pn;(4) �(x) = 0 for x 2 B2pn nB1=2:Proof. Set �0(r) := Af1� (2pn=r)�g for A; � > 0 so that �0(2pn) = 0.Sine ( D�0(jxj) = A(2pn)��jxj���2x;D2�0(jxj) = A(2pn)��jxj���4fjxj2I � (� + 2)x
 xg;we aluulate in the following way: At x 6= 0, we haveP�(D2�0(jxj))� �jD�0(jxj)j � A(2pn)��jxj���2f(�+ 2)�� n�� �jxjg:108



Fig 7.1
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Setting � := ��1(n� + 2�pn) � 2 so that � > 0 for n � 2, we see thatthe right hand side of the above is nonnegative for x 2 B2pn n f0g. Thus,taking � 2 C2(B2pn) suh that �(x) = �0(jxj) for x 2 B2pn n B1=2 and�(x) � �0(3pn=2) for x 2 B3pn=2, we an hoose a ontinuous funtion �satisfying (1) and (4). See Fig 7.1.Moreover, taking A := 2=f(4=3)� � 1g so that �0(3pn=2) = �2, we seethat (2) holds. 2We now present an important \ube deomposition lemma".We shall explain a terminology for the lemma: For a ube ~Q := Qr(x) withr > 0 and x 2 Rn, we all Q a dyadi ube of ~Q if it is one of ubes fQkg2nk=1so that Qk := Qr=2(xk) for some xk 2 ~Q, and [2nk=1Qk � ~Q � [2nk=1Qk.Lemma 7.7. (Lemma 4.2 in [4℄) Let A � B � Q1 be measurable setsand 0 < Æ < 1 suh that(a) jAj � Æ;(b) Assume that if a dyadi ube Q of ~Q � Q1 satis�es jA \Qj > ÆjQj;then ~Q � B.Then, jAj � ÆjBj.Proof of Proposition 6.4. Assuming that u 2 C(B2pn) is a nonnegative109



visosity supersolution ofP+(D2u) + �jDuj � 0 in B2pn; (7:14)we shall show that for some onstants p0 > 0 and C1 > 0,kukLp0(Q1) � C1 infQ1=2 u:To this end, it is suÆient to show that if u 2 C(B2pn) satis�es thatinfQ1=2 u � 1, then we have kukLp0(Q1) � C1 for some onstants p0; C1 > 0.Indeed, by taking v(x) := u(x) �infQ1=2 u+ Æ��1 for any Æ > 0 in plae of u,we have kvkLp0(Q1) � C1, whih implies the assertion by sending Æ ! 0.Lemma 7.8. There are � > 0 and M > 1 suh that if u 2 C(B2pn) is anonnegative Lp-visosity supersolution of (7:14) suh thatinfQ3 u � 1; (7:15)then we have jfx 2 Q1 j u(x) �Mgj � �:Remark. In our setting of proof of Proposition 7.4, assumption (7.15) isautomatially satis�ed.Proof of Lemma 7.8. Choose � 2 C2(B2pn) and � 2 C(B2pn) from Lemma7.6. Using (4) of Proposition 3.2, we easily see that w := u + � is an Ln-visosity supersolution ofP+(D2w) + �jDwj � �� in B2pn:Sine infQ3 w � �1 and w � 0 on �B2pn by (2) and (3) in Lemma 7.6,respetively, by Proposition 6.2, we �nd Ĉ > 0 suh that1 � supQ3 (�w) � supB2pn(�w) � Ĉk�kLn(�[�w;B2pn℄\B+2pn[�w℄): (7:16)In view of (4) of Lemma 7.6, (7.16) implies that1 � ĈmaxB1=2 j�jjfx 2 Q1 j (u+ �)(x) < 0gj:110



Sine u(x) � ��(x) � maxB2pn(��) =:M for x 2 B2pn:Therefore, setting � = (Ĉ supQ1 j�j)�1 > 0 and M = supB2pn(��) � 2, wehave � � jfx 2 Q1 j u(x) �Mgj: 2We next show the following:Lemma 7.9. Under the same assumptions as in Lemma 7.8, we havejfx 2 Q1 j u(x) > Mkgj � (1� �)k for all k = 1; 2; : : :Proof. Lemma 7.8 yields the assertion for k = 1.Suppose that it holds for k � 1. Setting A := fx 2 Q1 j u(x) > Mkg andB := fx 2 Q1 j u(x) > Mk�1g, we shall show jAj � (1� �)jBj.Sine A � B � Q1 and jAj � jfx 2 Q1 j u(x) > Mgj � Æ := 1 � �, inview of Lemma 7.8, it is enough to hek that property (b) in Lemma 7.7holds.To this end, let Q := Q1=2j (z) be a dyadi ube of ~Q := Q1=2j�1(ẑ) (forsome z; ẑ 2 Q1 and j � 1) suh thatjA \Qj > ÆjQj = 1� �2jn : (7:17)It remains to show ~Q � B.Assuming that there is ~x 2 ~Q suh that ~x =2 B; i:e: u(~x) �Mk�1.Set v(x) := u(z + 2�jx)=Mk�1 for x 2 B2pn. Sine j~xi � zij � 3=2j+1, wesee that infQ3 v � u(~x)=Mk�1 � 1. Furthermore, sine z 2 Q1, z + 2�jx 2B2pn for x 2 B2pn.Thus, sine v is an Lp-visosity supersolution ofP+(D2v) + �jDvj � 0;Lemma 7.8 yields jfx 2 Q1 j v(x) �Mgj � �. Therefore, we havejfx 2 Q j u(x) �Mkgj � �2jn = �jQj:111



Fig 7.2
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Thus, we have jQ n Aj � �jQj. Hene, in view of (7.17), we havejQj = jA \Qj+ jQ n Aj > ÆjQj+ �jQj = jQj;whih is a ontradition. 2Bak to the proof of Proposition 6.4. A diret onsequene of Lemma 7.9is that there are ~C; " > 0 suh thatjfx 2 Q1 j u(x) � tgj � ~Ct�" for t > 0: (7:18)Indeed, for t > M , we hoose an integer k � 1 so that Mk+1 � t > Mk.Thus, we havejfx 2 Q1 j u(x) � tgj � jfx 2 Q1 j u(x) > Mkgj � (1� �)k � ~C0t�";where ~C0 := (1� �)�1 and " := � log(1� �)= logM > 0.Sine 1 � M "t�" for 0 < t � M , taking ~C := maxf ~C0;M "g, we obtain(7.18).Now, realling Fubini's theorem,ZQ1 up0(x)dx � Zfx2Q1 j u(x)�1g up0(x)dx + 1= p0 Z 11 tp0�1jfx 2 Q1 j u(x) � tgjdt+ 1;(see Lemma 9.7 in [13℄ for instane), in view of (7.18), for any p0 2 (0; "), wean �nd C(p0) > 0 suh that kukLp0(Q1) � C(p0). 2112



7.5 Proof of the loal maximum prinipleAlthough our proof is a bit tehnial, we give a modi�ation of Trudinger'sproof in [13℄ (Theorem 9.20), in whih he observed a preise estimate for\strong" subsolutions on the upper ontat set. Reently, Fok in [11℄ (1996)gave a similar proof to ours.We note that we an �nd a di�erent proof of the loal maximum priniplein [4℄ (Theorem 4.8 (2)).Proof of Proposition 6.5. We give a proof only when q 2 (0; 1℄ beause itis immediate to show the assertion for q > 1 by H�older's inequality.Let x0 2 Q1 be suh that maxQ1 u = u(x0). It is suÆient to show thatmaxB1=4(x0) u � C2ku+kLq(B1=2(x0))sine B1=2(x0) � Q2. Thus, by onsidering u((x� x0)=2) instead of u(x), itis enough to �nd C2 > 0 suh thatmaxB1=2 u � C2ku+kLq(B1):We may suppose that maxB1 u > 0 (7:19)sine otherwise, the onlusion is trivial.Furthermore, by the ontinuity of u, we an hoose � 2 (0; 1=4) suh that1� 2� � 1=2 and maxB1�2� u > 0:We shall onsider the sup-onvolution of u again: For " 2 (0; �),u"(x) := supy2B1 (u(y)� jx� yj22" ) :By the uniform onvergene of u" to u, (7.19) yieldsmaxB1�� u" > 0 for small " > 0: (7:20)For small " > 0, we an hoose Æ := Æ(") 2 (0; �) suh that lim"!0 Æ = 0,and P�(D2u")� �jDu"j � 0 a:e: in B1�Æ:113



Putting �"(x) := f(1� Æ)2 � jxj2g� for � := 2n=q � 2, we de�ne v"(x) :=�"(x)u"(x). We note that r" := maxB1�Æ v" > 0:Fix r 2 (0; r") and set �"r := �r[v"; B1�Æ℄. By (1) in Lemma 7.5, we see�"r � B+1�Æ[v"℄.For later onveniene, we observe thatDv"(x) = �2�x�(x)(��1)=�u"(x) + �(x)Du"(x); (7:21)D2v"(x) = �2��(x)(��1)=�fu"(x)I + x
Du"(x) +Du"(x)
 xg+4�(� � 1)�(x)(��2)=�u"(x)x
 x + �(x)D2u"(x): (7:22)Sine u" is twie di�erentiable almost everywhere, we an hoose a mea-surable set N" � B1�Æ suh that jN"j = 0 and u" is twie di�erentiable atx 2 B1�Æ nN". Of ourse, v" is also twie di�erentiable at x 2 B1�Æ nN".By (7.22), we haveP�(D2v") � �P�(D2u") + 2��(��1)=�f�nu" � P�(x
Du" +Du" 
 x)gin B+1�Æ[v"℄. By using (7.21), the last term in the above an be estimatedfrom above by Cf��2=�(v")+ + ��1=�jDv"jg:Moreover, using (7.21) again, we haveP�(D2u") � �jDu"j � ���1jDv"j+ C��1=�(u")+:Hene, we �nd C > 0 suh thatP�(D2v") � C��1=�jDv"j+ C��2=�(v")+ =: g" in B1�Æ nN": (7:23)We next laim that there is C > 0 suh thatjDv"(x)j � C��1=�(x)v"(x) for x 2 �"r nN": (7:24)First, we note that at x 2 �"r n N", v"(y) � v"(x) + hDv"(x); y � xi fory 2 B1�Æ. 114



To show this laim, sine we may suppose jDv"(x)j > 0 to get the esti-mate, setting y := x � tDv"(x)jDv"(x)j�1 2 �B1�Æ for t 2 [1 � Æ � jxj; 1 �Æ + jxj℄, we see that 0 = v"(y) � v"(x)� tjDv"(x)j;whih implies jDv"(x)j � Cv"(x)��1=�(x) in �"r nN": (7:25)Here, we use Lemma 2.8 in [5℄, whih will be proved in the end of thissubsetion for the reader's onveniene:Lemma 7.10. Let w 2 C(
) be twie di�erentiable a:e: in 
, and satisfyP�(D2w) � g a:e: in 
;where g 2 Lp(
) with p � n. If �C1I � D2w(x) � O a:e: in 
 for someC1 > 0, then w is an Lp-visosity subsolution ofP�(D2w) � g in 
: (7:26)Sine u" is Lipshitz ontinuous in B1�Æ, by (7.22), we see that v" is anLn-visosity subsolution ofP�(D2v") � g" in B1�Æ:Noting (7.25), in view of Proposition 6.2, we havemaxB1�Æ v" � Ck��2=�(v")+kLn(�"r)� C  maxB1�Æ (v")+!��2� k((u")+)2=�kLn(B1�Æ);whih together with our hoie of � yieldsmaxB1�Æ v" � Ck(u")+kLq(B1�Æ):Therefore, by (7.20), we havemaxB1=2 u" � CmaxB1�Æ v" � Ck(u")+kLq(B1�Æ);115



Therefore, sending "! 0 in the above, we �nish the proof. 2Proof of Lemma 7.10. In order to show that w 2 C(
) is an Lp-visositysubsolution of (7.26), we suppose the ontrary; there are "; r > 0, x̂ 2 
 and� 2 W 2;plo (
) suh that 0 = (w � �)(x̂) = max
(w � �), B2r(x̂) � 
, andP�(D2�)� g � 2" a:e: in Br(x̂):We may suppose that x̂ = 0 2 
. Setting  (x) := �(x) + � jxj4 for small� > 0, we observe thath := P�(D2 )� g � " a:e: in Br:Notie that 0 = (w �  )(0) > (w �  )(x) for x 2 Br n f0g.Moreover, we observeP�(D2(w �  )) � �" a:e: in Br: (7:27)Consider wÆ := w � �Æ, where �Æ is the standard molli�er for Æ > 0. Fromour assumption, we see that, as Æ ! 0,( (1) wÆ ! w uniformly in Br;(2) D2wÆ ! D2w a:e: in Br:By Lusin's Theorem, for any � > 0, we �nd E� � Br suh that jBr nE�j < �,ZBrnE�(1 + jP�(�D2 )j)pdx < �;and D2wÆ ! D2w uniformly in E� (as Æ ! 0):Setting hÆ := P�(D2(wÆ �  )), we �nd C > 0 suh thathÆ � C + P�(�D2 )beause of our hypothesis. Hene, we havek(hÆ)+kpLp(Br) � C ZBrnE�(1 + jP�(�D2 )j)pdx+ ZE� j(hÆ)+jpdx:Sending Æ ! 0 in the above, by (7.27), we havelim supÆ!0 k(hÆ)+kLp(Br) � Ck(1 + jP�(�D2 )j)kLp(BrnE�) � C�: (7:28)116



On the other hand, in view of Proposition 6.2, we see thatmaxBr (wÆ �  ) � max�Br (wÆ �  ) + Ck(hÆ)+kLp(Br):Hene, by sending Æ ! 0, this inequality together with (7.28) implies that0 = maxBr (w �  ) � max�Br (w �  ) + C� for any � > 0:This is a ontradition sine max�Br(w �  ) < 0. 2
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