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Prefa
eThis book was originally written in Japanese for undergraduate studentsin the Department of Mathemati
s of Saitama University. In fa
t, the �rsthand-written draft was prepared for a series of le
tures on the vis
osity so-lution theory for undergraduate students in Ehime University and HokkaidoUniversity.The aim here is to present a brief introdu
tion to the theory of vis
ositysolutions for students who have knowledge on Advan
ed Cal
ulus (i:e: di�er-entiation and integration on fun
tions of several-variables) and hopefully, alittle on Lebesgue Integration and Fun
tional Analysis. Sin
e this is writtenfor undergraduate students who are not ne
essarily ex
ellent, I try to give\easy" proofs throughout this book. Thus, if you do not feel any diÆ
ultyto read User's guide [6℄, you should try to read that one.I also try not only to show the vis
osity solution theory but also to men-tion some related \
lassi
al" results.Our plan of this book is as follows: We begin with our motivation inse
tion 1. Se
tion 2 introdu
es the de�nition of vis
osity solutions and theirproperties. In se
tion 3, we �rst show \
lassi
al" 
omparison prin
iples andthen, extend them to vis
osity solutions of �rst- and se
ond-order PDEs,separately. We establish two kinds of existen
e results via Perron's methodand representation formulas for Bellman and Isaa
s equations in se
tion 4.We dis
uss boundary value problems for vis
osity solutions in se
tions 5.Se
tion 6 is a short introdu
tion to the Lp-vis
osity solution theory, on whi
hwe have an ex
ellent book [4℄.In Appendix, whi
h is the hardest part, we give proofs of fundamentalpropositions.In order to learn more on vis
osity solutions, I give a list of \books":A popular survey paper [6℄ by Crandall-Ishii-Lions on the theory of vis
os-ity solutions of se
ond-order, degenerate ellipti
 PDEs is still a good 
hoi
efor undergraduate students to learn �rst. However, to my experien
e, itseems a bit hard for average undergraduate students to understand.Bardi-Capuzzo Dol
etta's book [1℄ 
ontains lots of information on vis
os-ity solutions for �rst-order PDEs (Hamilton-Ja
obi equations) while Fleming-Soner's [10℄ 
omplements topi
s on se
ond-order (degenerate) ellipti
 PDEswith appli
ations in sto
hasti
 
ontrol problems.Barles' book [2℄ is also ni
e to learn his original te
hniques and Fren
hlanguage simultaneously ! ii



It has been informed that Ishii would write a book [15℄ in Japanese onvis
osity solutions in the near future, whi
h must be more advan
ed thanthis.For an important appli
ation via the vis
osity solution theory, we referto Giga's [12℄ on 
urvature 
ow equations. Also, I re
ommend the reader to
onsult Le
ture Notes [3℄ (Bardi-Crandall-Evans-Soner-Souganidis) not onlyfor various appli
ations but also for a \friendly" introdu
tion by Crandall,who �rst introdu
ed the notion of vis
osity solutions with P.-L. Lions in early80s.If the reader is interested in se
tion 6, I re
ommend him/her to atta
kCa�arelli-Cabr�e's [4℄.As a general PDE theory, although there are so many books on PDEs, Ionly refer to my favorite ones; Gilbarg-Trudinger's [13℄ and Evans' [8℄. Alsoas a textbook for undergraduate students, Han-Lin's short le
ture notes [14℄is a good 
hoi
e.Sin
e this is a text-book, we do not refer the reader to original papersunless those are not mentioned in the books in our referen
es.A
knowledgmentFirst of all, I would like to express my thanks to Professors H. Morimotoand Y. Tonegawa for giving me the opportunity to have a series of le
tures intheir universities. I would also like to thank Professors K. Ishii, T. Nagasawa,and a graduate student, K. Nakagawa, for their suggestions on the �rst draft.I wish to express my gratitude to Professor H. Ishii for having given meenormous supply of ideas sin
e 1980.I also wish to thank the reviewer for several important suggestions.My �nal thanks go to Professor T. Ozawa for re
ommending me to publishthis manus
ript. He kindly suggested me to 
hange the original Japanese title(\A se
ret 
lub on vis
osity solutions").
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Prefa
e for the 2nd editionAlthough I 
orre
ted many errors in the �rst version, there must be somemistakes in this version. I would be glad if the reader would kindly informme errors and typos et
.I would like to thank T. Imai, H. Ishii, K. Ishii, K. Kohsaka, H. Mitake, T.Nagasawa, S. Nakagawa, T. Nozokido, M. Ohta, and T. Ohtsuka for pointingout numerous errors in the �rst edition.
9 May 2013 Shigeaki Koike

iv



Contents1 Introdu
tion 11.1 From 
lassi
al solutions to weak solutions 21.2 Typi
al examples of weak solutions 41.2.1 Burgers' equation 41.2.2 Hamilton-Ja
obi equation 62 De�nition 92.1 Vanishing vis
osity method 92.2 Equivalent de�nitions 173 Comparison prin
iple 233.1 Classi
al 
omparison prin
iple 243.1.1 Degenerate ellipti
 PDEs 243.1.2 Uniformly ellipti
 PDEs 243.2 Comparison prin
iple for �rst-order PDEs 263.3 Extension to se
ond-order PDEs 313.3.1 Degenerate ellipti
 PDEs 333.3.2 Remarks on the stru
ture 
ondition 353.3.3 Uniformly ellipti
 PDEs 384 Existen
e results 404.1 Perron's method 404.2 Representation formulas 454.2.1 Bellman equation 464.2.2 Isaa
s equation 514.3 Stability 585 Generalized boundary value problems 625.1 Diri
hlet problem 655.2 State 
onstraint problem 685.3 Neumann problem 725.4 Growth 
ondition at jxj ! 1 75
v



6 Lp-vis
osity solutions 786.1 A brief history 786.2 De�nition and basi
 fa
ts 816.3 Harna
k inequality 846.3.1 Linear growth 856.3.2 Quadrati
 growth 876.4 H�older 
ontinuity estimates 896.5 Existen
e result 927 Appendix 957.1 Proof of Ishii's lemma 957.2 Proof of the ABP maximum prin
iple 1007.3 Proof of existen
e results for Pu

i equations 1057.4 Proof of the weak Harna
k inequlity 1087.5 Proof of the lo
al maximum prin
iple 113Referen
es 118Notation Index 120Index 121

vi



1 Introdu
tionThroughout this book, we will work in 
 (ex
ept in se
tions 4.2 and 5.4),where 
 � Rn is open and bounded.We denote by h�; �i the standard inner produ
t in Rn, and set jxj =qhx; xi for x 2 Rn. We use the standard notion of open balls: For r > 0and x 2 Rn,Br(x) := fy 2 Rn j jx� yj < rg; and Br := Br(0):For a fun
tion u : 
! R, we denote its gradient and Hessian matrix atx 2 
, respe
tively, by Du(x) := 0BBB� �u(x)�x1...�u(x)�xn 1CCCA ;
D2u(x) := 0BBBBBBBBBB�

�2u(x)�x21 � � � j-th � � � �2u(x)�x1�xn... ... ...i-th � � � �2u(x)�xi�xj � � � ...... ... ...�2u(x)�xn�x1 � � � � � � � � � �2u(x)�x2n
1CCCCCCCCCCA :Also, Sn denotes the set of all real-valued n � n symmetri
 matri
es. Notethat if u 2 C2(
), then D2u(x) 2 Sn for x 2 
.We re
all the standard ordering in Sn:X � Y () hX�; �i � hY �; �i for 8� 2 Rn:We will also use the following notion in se
tions 6 and 7: For � =t(�1; : : : ; �n), � =t (�1; : : : ; �n) 2 Rn, we denote by � 
 � the n � n matrixwhose (i; j)-entry is �i�j for 1 � i; j � n;� 
 � = 0BBBBBBBB� �1�1 � � � j-th � � � �1�n... ... ...i-th � � � �i�j � � � ...... ... ...�n�1 � � � � � � � � � �n�n

1CCCCCCCCA :1



We are 
on
erned with general se
ond-order partial di�erential equations(PDEs for short): F (x; u(x); Du(x); D2u(x)) = 0 in 
: (1:1)We suppose (ex
ept in several se
tions) thatF : 
�R�Rn � Sn ! R is 
ontinuouswith respe
t to all variables.1.1 From 
lassi
al solutions to weak solutionsAs the �rst example of PDEs, we present the Lapla
e equation:�4u = 0 in 
: (1:2)Here, we de�ne 4u := tra
e(D2u). In the literature of the vis
osity solutiontheory, we prefer to have the minus sign in front of 4.Of 
ourse, sin
e we do not require any boundary 
ondition yet, all poly-nomials of degree one are solutions of (1.2). In many textbooks (parti
ularlythose for engineers), under 
ertain boundary 
ondition, we learn how to solve(1.2) when 
 has some spe
ial shapes su
h as 
ubes, balls, the half-spa
e orthe whole spa
e Rn. Here, \solve" means that we �nd an expli
it formula ofu using elementary fun
tions su
h as polynomials, trigonometri
 ones, et
.However, the study on (1.2) in su
h spe
ial domains is not appli
ablebe
ause, for instan
e, solutions of equation (1.2) represent the density of agas in a bottle, whi
h is neither a ball nor a 
ube.Unfortunately, in general domains, it seems impossible to �nd formulas forsolutions u with elementary fun
tions. Moreover, in order to 
over problemsarising in physi
s, engineering and �nan
e, we will have to study more generaland 
ompli
ated PDEs than (1.2). Thus, we have to deal with general PDEs(1.1) in general domains.If we give up having formulas for solutions of (1.1), how do we investigatePDEs (1.1) ? In other words, what is the right question in the study of PDEs? In the literature of the PDE theory, the most basi
 questions are as fol-lows: 2



(1) Existen
e: Does there exist a solution ?(2) Uniqueness: Is it the only solution ?(3) Stability: If the PDE 
hanges a little,does the solution 
hange a little ?The importan
e of the existen
e of solutions is trivial sin
e, otherwise,the study on the PDE 
ould be useless.To explain the signi�
an
e of the uniqueness of solutions, let us remem-ber the reason why we study the PDE. Usually, we dis
uss PDEs or theirsolutions to understand some spe
i�
 phenomena in nature, engineerings ore
onomi
s et
. Parti
ularly, people working in appli
ations want to knowhow the solution looks like, moves, behaves et
. For this purpose, it mightbe powerful to use numeri
al 
omputations. However, numeri
al analysisonly shows us an \approximate" shapes, movements, et
. Thus, if thereare more than one solution, we do not know whi
h is approximated by thenumeri
al solution.Also, if the stability of solutions fails, we 
ould not predi
t what will hap-pen from the numeri
al experiments even though the uniqueness of solutionsholds true.Now, let us 
ome ba
k to the most essential question:What is the \solution" of a PDE ?For example, it is natural to 
all a fun
tion u : 
 ! R a solution of(1.1) if there exist the �rst and se
ond derivatives, Du(x) and D2u(x), forall x 2 
, and (1.1) is satis�ed at ea
h x 2 
 when we plug them in the lefthand side of (1.1). Su
h a fun
tion u will be 
alled a 
lassi
al solution of(1.1).However, unfortunately, it is diÆ
ult to seek for a 
lassi
al solution be-
ause we have to verify that it is suÆ
iently di�erentiable and that it satis�esthe equality (1.1) simultaneously.Instead of �nding a 
lassi
al solution dire
tly, we have de
ided to 
hoosethe following strategy:(A) Find a 
andidate of the 
lassi
al solution,(B) Che
k the di�erentiability of the 
andidate.In the standard books, the 
andidate of a 
lassi
al solution is 
alled aweak solution; if the weak solution has the �rst and se
ond derivatives, then3



it be
omes a 
lassi
al solution. In the literature, showing the di�erentiabilityof solutions is 
alled the study on the regularity of those.Thus, with these terminologies, we may rewrite the above with mathe-mati
al terms: (A) Existen
e of weak solutions,(B) Regularity of weak solutions.However, when we 
annot expe
t 
lassi
al solutions of a PDE to exist,what is the right 
andidate of solutions ?We will 
all a fun
tion the 
andidate of solutions of a PDE if it is a\unique" and \stable" weak solution under a suitable setting. In se
tion 2,we will de�ne su
h a 
andidate named \vis
osity solutions" for a large 
lassof PDEs, and in the pro
eeding se
tions, we will extend the de�nition tomore general (possibly dis
ontinuous) fun
tions and PDEs.In the next subse
tion, we show a brief history on \weak solutions" toremind what was known before the birth of vis
osity solutions.1.2 Typi
al examples of weak solutionsIn this subse
tion, we give two typi
al examples of PDEs to derive two kindsof weak solutions whi
h are unique and stable.1.2.1 Burgers' equationWe 
onsider Burgers' equation, whi
h is a model PDE in Fluid Me
hani
s:�u�t + 12 �(u2)�x = 0 in R� (0;1) (1:3)under the initial 
ondition:u(x; 0) = g(x) for x 2 R; (1:4)where g is a given fun
tion.In general, we 
annot �nd 
lassi
al solutions of (1.3)-(1.4) even if g issmooth enough. See [8℄ for instan
e.In order to look for the appropriate notion of weak solutions, we �rstintrodu
e a fun
tion spa
e C10 (R� [0;1)) as a \test fun
tion spa
e":C10(R� [0;1)) := ( � 2 C1(R� [0;1)) ����� there is K > 0 su
h thatsupp � � [�K;K℄� [0; K℄ ) :4



Here and later, we denote by supp � the following set:supp � := f(x; t) 2 R� [0;1) j �(x; t) 6= 0g:Suppose that u satis�es (1.3). Multiplying (1.3) by � 2 C10(R � [0;1))and then, using integration by parts, we haveZR Z 10  u���t + u22 ���x! (x; t)dtdx+ ZR u(x; 0)�(x; 0)dx = 0:Sin
e there are no derivatives of u in the above, this equality makes sense ifu 2 [K>0L1((�K;K)�(0; K)). Hen
e, we may adapt the following propertyas the de�nition of weak solutions of (1.3)-(1.4).8>>><>>>: ZR Z 10  u���t + u22 ���x! (x; t)dtdx+ ZR g(x)�(x; 0)dx = 0for all � 2 C10(R� [0;1)):We often 
all this a weak solution in the distribution sense. As you no-ti
ed, we derive this notion by an essential use of integration by parts. Wesay that a PDE is in divergen
e form when we 
an adapt the notion ofweak solutions in the distribution sense. When the PDE is not in divergen
eform, we say that it is in nondivergen
e form.We note that the solution of (1.3) may have singularities even though theinitial value g belongs to C1 by an observation via \
hara
teristi
 method".From the de�nition of weak solutions, we 
an derive the so-
alled Rankine-Hugoniot 
ondition on the set of singularities.On the other hand, unfortunately, we 
annot show the uniqueness of weaksolutions of (1.3)-(1.4) in general while we know the famous Lax-Oleinikformula (see [8℄ for instan
e), whi
h is the \expe
ted" solution.In order to obtain the uniqueness of weak solutions, for the de�nition, weadd the following property (
alled \entropy 
ondition") whi
h holds for theexpe
ted solution given by the Lax-Oleinik formula: There is C > 0 su
hthat u(x+ z; t)� u(x; t) � Cztfor all (x; t; z) 2 R� (0;1)� (0;1). We 
all u an entropy solution of (1.3)if it is a weak solution satisfying this inequality. It is also known that su
ha weak solution has a 
ertain stability property.5



We note that this entropy solution satis�es the above mentioned impor-tant properties; \existen
e, uniqueness and stability". Thus, it must be aright de�nition for weak solutions of (1.3)-(1.4).1.2.2 Hamilton-Ja
obi equationsNext, we shall 
onsider general Hamilton-Ja
obi equations, whi
h arise inOptimal Control and Classi
al Me
hani
s:�u�t +H(Du) = 0 in (x; t) 2 Rn � (0;1) (1:5)under the same initial 
ondition (1.4).In this example, we suppose that H : Rn ! R is 
onvex, i:e:H(�p+ (1� �)q) � �H(p) + (1� �)H(q) (1:6)for all p; q 2 Rn; � 2 [0; 1℄.Remark. Sin
e a 
onvex fun
tion is lo
ally Lips
hitz 
ontinuous in general,we do not need to assume the 
ontinuity of H.Example. In Classi
al Me
hani
s, we often 
all this H a \Hamiltonian".As a simple example of H, we have H(p) = jpj2.Noti
e that we 
annot adapt the weak solution in the distribution sensefor (1.5) sin
e we 
annot use the integration by parts.We next introdu
e the Lagrangian L : Rn ! R de�ned byL(q) = supp2Rnfhp; qi �H(p)g:When H(p) = jpj2, it is easy to verify that the maximum is attained in theright hand side of the above.It is surprising that we have a neat formula for the expe
ted solution(
alled Hopf-Lax formula) presented byu(x; t) = miny2Rn �tL�x� yt �+ g(y)� : (1:7)More pre
isely, it is shown that the right hand side of (1.7) is di�erentiableand satis�es (1.5) almost everywhere.6



Thus, we 
ould 
all u a weak solution of (1.5)-(1.4) when u satis�es (1.5)almost everywhere. However, if we de
ide to use this notion as a weak solu-tion, the uniqueness of those fails in general. We will see an example in thenext se
tion.As was shown for Burgers' equation, in order to say that the \uniqueweak" solution is given by (1.7), we have to add one more property for thede�nition of weak solutions: There is C > 0 su
h thatu(x+ z; t)� 2u(x; t) + u(x� z; t) � Cjzj2 (1:8)for all x; z 2 R; t > 0. This is 
alled the \semi-
on
avity" of u.We note that (1.8) is a hypothesis on the one-sided bound of se
ondderivatives of fun
tions u.In 60s, Kruzkov showed that the limit fun
tion of approximate solutionsby the vanishing vis
osity method (see the next se
tion) has this property(1.8) when H is 
onvex. He named u a \generalized" solution of (1.5) whenit satis�es (1.5) almost everywhere and (1.8).To my knowledge, between Kruzkov's works and the birth of vis
ositysolutions, there had been no big progress in the study of �rst-order PDEs innondivergen
e form.Remark. The 
onvexity (1.6) is a natural hypothesis when we 
onsideronly optimal 
ontrol problems where one person intends to minimize some\
osts" (\energy" in terms of Physi
s). However, when we treat game prob-lems (one person wants to minimize 
osts while the other tries to maximizethem), we meet non-
onvex and non-
on
ave (i:e: \fully nonlinear")Hamiltonians. See se
tion 4.2.In this book, sin
e we are 
on
erned with vis
osity solutions of PDEs innondivergen
e form, for whi
h the integration by parts argument 
annot beused to de�ne the notion of weak solutions in the distribution sense, we shallgive typi
al examples of su
h PDEs.Example. (Bellman and Isaa
s equations)We �rst give Bellman equations and Isaa
s equations, whi
h arise in(sto
hasti
) optimal 
ontrol problems and di�erential games, respe
tively.As will be seen, those are extensions of linear PDEs.Let A and B be sets of parameters. For instan
e, we suppose A and Bare (
ompa
t) subsets in Rm (for some m � 1). For a 2 A, b 2 B, x 2 
,7



r 2 R, p =t(p1; : : : ; pn) 2 Rn, and X = (Xij) 2 Sn, we setLa(x; r; p;X) := �tra
e(A(x; a)X) + hg(x; a); pi+ 
(x; a)r;La;b(x; r; p;X) := �tra
e(A(x; a; b)X) + hg(x; a; b); pi+ 
(x; a; b)r:Here A(�; a); A(�; a; b); g(�; a); g(�; a; b); 
(�; a) and 
(�; a; b) are given fun
tionsfor (a; b) 2 A� B.For inhomogeneous terms, we 
onsider fun
tions f(�; a) and f(�; a; b) in 
for a 2 A and b 2 B.We 
all the following PDEs Bellman equations:supa2AfLa(x; u(x); Du(x); D2u(x))� f(x; a)g = 0 for x 2 
: (1:9)Noti
e that the supremum over A is taken at ea
h point x 2 
.Taking a

ount of one more parameter set B, we 
all the following PDEsIsaa
s equations:supa2A infb2BfLa;b(x; u(x); Du(x); D2u(x))� f(x; a; b)g = 0 for x 2 
 (1:10)andinfb2B supa2AfLa;b(x; u(x); Du(x); D2u(x))� f(x; a; b)g = 0 for x 2 
: (1:100)Example. (\Quasi-linear" equations)We say that a PDE is quasi-linear if the 
oeÆ
ients of D2u 
ontains uor Du. Although we will not study quasilinear PDEs in this book, we givesome of those whi
h are in nondivergen
e form.We �rst give the PDE of mean 
urvature type:F (x; p;X) := � �jpj2tra
e(X)� hXp; pi� :Noti
e that this F is independent of x-variables. We refer to [12℄ for appli-
ations where this kind of operators appears.Next, we show a relatively \new" one 
alled L1-Lapla
ian:F (x; p;X) := �hXp; pi:Again, this F does not 
ontain x-variables. We refer to Jensen's work [16℄,where he �rst studied the PDE \�hD2uDu;Dui = 0 in 
" via the vis
ositysolution approa
h. 8



2 De�nitionIn this se
tion, we derive the de�nition of vis
osity solutions of (1.1) via thevanishing vis
osity method.We also give some basi
 properties of vis
osity solutions and equivalentde�nitions using \semi-jets".2.1 Vanishing vis
osity methodWhen the notion of vis
osity solutions was born, in order to explain thereason why we need it, many speakers started in their talks by giving thefollowing typi
al example 
alled the eikonal equation:jDuj2 = 1 in 
: (2:1)We seek C1 fun
tions satisfying (2.1) under the Diri
hlet 
ondition:u(x) = 0 for x 2 �
: (2:2)However, sin
e there is no 
lassi
al solution of (2.1)-(2.2) (showing the non-existen
e of 
lassi
al solutions is a good exer
ise), we intend to derive areasonable de�nition of weak solutions of (2.1).In fa
t, we expe
t that the following fun
tion (the distan
e from �
)would be the unique solution of this problem (see Fig 2.1):u(x) = dist(x; �
) := infy2�
 jx� yj:

Fig 2.1

PSfrag repla
ements
�1

1
10

y y = u(x)x
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If we 
onsider the 
ase when n = 1 and 
 = (�1; 1), then the expe
tedsolution is given by u(x) = 1� jxj for x 2 [�1; 1℄: (2:3)Sin
e this fun
tion is C1 ex
ept at x = 0, we 
ould de
ide to 
all u a weaksolution of (2.1) if it satis�es (2.1) in 
 ex
ept at �nite points.

Fig 2.2

PSfrag repla
ements 1�1�1 0 xy

However, even in the above simple 
ase of (2.1), we know that there arein�nitely many su
h weak solutions of (2.1) (see Fig 2.2); for example, �u isthe weak solution andu(x) = 8><>: x + 1 for x 2 [�1;�12);�x for x 2 [�12 ; 12);x� 1 for x 2 [12 ; 1℄; : : : et
:Now, in order to look for an appropriate notion of weak solutions, weintrodu
e the so-
alled vanishing vis
osity method; for " > 0, we 
onsiderthe following PDE as an approximate equation of (2.1) when n = 1 and
 = (�1; 1): ( �"u00" + (u0")2 = 1 in (�1; 1);u"(�1) = 0: (2:4)The �rst term, �"u00" , in the left hand side of (2.4) is 
alled the vanishingvis
osity term (when n = 1) as "! 0.By an elementary 
al
ulation, we 
an �nd a unique smooth fun
tion u"in the following manner: We �rst note that if a 
lassi
al solution of (2.4)10



exists, then it is unique. Thus, we may suppose that u0"(0) = 0 by symmetry.Setting v" = u0", we �rst solve the ODE:( �"v0" + v2" = 1 in (�1; 1);v"(0) = 0: (2:5)It is easy to see that the solution of (2.5) is given byv"(x) = � tanh�x"� :Hen
e, we 
an �nd u" byu"(x) = �" log0�
osh �x"�
osh �1"�1A = �" log ex" + e�x"e 1" + e� 1" ! :It is a good exer
ise to show that u" 
onverges to the fun
tion in (2.3)uniformly in [�1; 1℄.Remark. Sin
e û"(x) := �u"(x) is the solution of( "u00 + (u0)2 = 1 in (�1; 1);u(�1) = 0;we have û(x) := lim"!0 û"(x) = �u(x). Thus, if we repla
e �"u00 by +"u00,then the limit fun
tion would be di�erent in general.To de�ne weak solutions, we adapt the properties whi
h hold for the(uniform) limit of approximate solutions of PDEs with the \minus" vanishingvis
osity term.Let us 
ome ba
k to general se
ond-order PDEs:F (x; u;Du;D2u) = 0 in 
: (2:6)We shall use the following de�nition of 
lassi
al solutions:De�nition. We 
all u : 
 ! R a 
lassi
al subsolution (resp.,supersolution, solution) of (2:6) if u 2 C2(
) andF (x; u(x); Du(x); D2u(x)) � 0 (resp., � 0; = 0) in 
:11



Remark. If F does not depend on X-variables (i:e: F (x; u;Du) = 0; �rst-order PDEs), we only suppose u 2 C1(
) in the above in pla
e of u 2 C2(
).Throughout this text, we also suppose the following monotoni
ity 
ondi-tion with respe
t to X-variables:De�nition. We say that F is (degenerate) ellipti
 if( F (x; r; p;X) � F (x; r; p; Y )for all x 2 
; r 2 R; p 2 Rn; X; Y 2 Sn provided X � Y: (2:7)We noti
e that if F does not depend on X-variables (i:e: F = 0 is the�rst-order PDE), then F is automati
ally ellipti
.We also note that the left hand side F (x; r; p;X) = �tra
e(X) of theLapla
e equation (1.2) is ellipti
.We will derive properties whi
h hold true for the (uniform) limit (as"! +0) of solutions of�"4u+ F (x; u;Du;D2u) = 0 in 
 (" > 0): (2:8)Note that sin
e �"tra
e(X) + F (x; r; p;X) is \uniformly" ellipti
 (see inse
tion 3 for the de�nition) provided that F is ellipti
 and F (x; r; p;X) �CjXj for (x; r; p) 2 
 � R � Rn, it is easier to solve (2.8) than (2.6) inpra
ti
e. See [13℄ for instan
e.Proposition 2.1. Assume that F is ellipti
. Let u" 2 C2(
) \ C(
)be a 
lassi
al subsolution (resp., supersolution) of (2:8). If u" 
onverges tou 2 C(
) (as " ! 0) uniformly in any 
ompa
t sets K � 
, then, for any� 2 C2(
), we haveF (x; u(x); D�(x); D2�(x)) � 0 (resp., � 0)provided that u� � attains its maximum (resp., minimum) at x 2 
.Remark. When F does not depend on X-variables, we only need to sup-pose � and u" to be in C1(
) as before.Proof. We only give a proof of the assertion for subsolutions sin
e theother one 
an be shown in a symmetri
 way.12



Suppose that u�� attains its maximum at x̂ 2 
 for � 2 C2(
). Setting�Æ(y) := �(y) + Æjy � x̂j4 for small Æ > 0, we see that(u� �Æ)(x̂) > (u� �Æ)(y) for y 2 
 n fx̂g:(This tiny te
hnique to repla
e a maximum point by a \stri
t" one will appearin Proposition 2.2.)Let x" 2 
 be a point su
h that (u" � �Æ)(x") = max
(u" � �Æ). Notethat x" also depends on Æ > 0.Sin
e u" 
onverges to u uniformly in Br(x̂) and x̂ is the unique maximumpoint of u � �Æ, we note that lim"!0 x" = x̂. Thus, we see that x" 2 
 forsmall " > 0. Noti
e that if we argue by � instead of �Æ, the limit of x" mightdi�er from x̂.Thus, at x" 2 
, we have�"4u"(x") + F (x"; u"(x"); Du"(x"); D2u"(x")) � 0:Sin
e D(u" � �Æ)(x") = 0 and D2(u" � �Æ)(x") � 0, in view of ellipti
ity, wehave �"4�Æ(x") + F (x"; u"(x"); D�Æ(x"); D2�Æ(x")) � 0:Sending "! 0 in the above, we haveF (x̂; u(x̂); D�Æ(x̂); D2�Æ(x̂)) � 0:Sin
e D�Æ(x̂) = D�(x̂) and D2�Æ(x̂) = D2�(x̂), we 
on
lude the proof. 2De�nition. We 
all u : 
 ! R a vis
osity subsolution (resp.,supersolution) of (2.6) if, for any � 2 C2(
),F (x; u(x); D�(x); D2�(x)) � 0 (resp., � 0)provided that u� � attains its maximum (resp., minimum) at x 2 
.We 
all u : 
! R a vis
osity solution of (2.6) if it is both a vis
ositysub- and supersolution of (2.6).Remark. Here, we have given the de�nition to \general" fun
tions butwe will often suppose that they are (semi-)
ontinuous in Theorems et
.In fa
t, in our propositions in se
tions 2.1, we will suppose that vis
ositysub- and supersolutions are 
ontinuous.13



However, all the proposition in se
tion 2.1 
an be proved by repla
ing up-per and lower semi-
ontinuity for vis
osity subsolutions and supersolutions,respe
tively.We will introdu
e general vis
osity solutions in se
tion 3.3.Notation. In order to memorize the 
orre
t inequality, we will oftensay that u is a vis
osity subsolution (resp., supersolution) ofF (x; u;Du;D2u) � 0 (resp., � 0) in 
if it is a vis
osity subsolution (resp., supersolution) of (2.6).Proposition 2.2. For u : 
 ! R, the following (1) and (2) are equiva-lent:8>>><>>>: (1) u is a vis
osity subsolution (resp., supersolution) of (2:6);(2) if 0 = (u� �)(x̂) > (u� �)(x) (resp., < (u� �)(x))for � 2 C2(
); x̂ 2 
 and x 2 
 n fx̂g;then F (x̂; �(x̂); D�(x̂); D2�(x̂)) � 0 (resp., � 0):

Fig 2.3

PSfrag repla
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Proof. The impli
ation (1)) (2) is trivial.For the opposite impli
ation in the subsolution 
ase, suppose that u� �attains a maximum at x̂ 2 
. Set�Æ(x) = �(x) + Æjx� x̂j4 + (u� �)(x̂):14



See Fig 2.3. Sin
e 0 = (u� �Æ)(x̂) > (u� �Æ)(x) for x 2 
 n fx̂g, (2) givesF (x̂; �Æ(x̂); D�Æ(x̂); D2�Æ(x̂)) � 0;whi
h implies the assertion. 2By the next proposition, we re
ognize that vis
osity solutions are right
andidates of weak solutions when F is ellipti
.Proposition 2.3. Assume that F is ellipti
. A fun
tion u : 
 ! Ris a 
lassi
al subsolution (resp., supersolution) of (2:6) if and only if it is avis
osity subsolution (resp., supersolution) of (2:6) and u 2 C2(
).Proof. Suppose that u is a vis
osity subsolution of (2.6) and u 2 C2(
).Taking � � u, we see that u� � attains its maximum at any points x 2 
.Thus, the de�nition of vis
osity subsolutions yieldsF (x; u(x); Du(x); D2u(x)) � 0 for x 2 
:On the 
ontrary, suppose that u 2 C2(
) is a 
lassi
al subsolution of(2.6).Fix any � 2 C2(
). Assuming that u � � takes its maximum at x 2 
,we have D(u� �)(x) = 0 and D2(u� �)(x) � 0:Hen
e, in view of ellipti
ity, we have0 � F (x; u(x); Du(x); D2u(x)) � F (x; u(x); D�(x); D2�(x)): 2We introdu
e the sets of upper and lower semi-
ontinuous fun
tions: ForK � Rn,USC(K) := fu : K ! R j u is upper semi-
ontinuous in Kg;and LSC(K) := fu : K ! R j u is lower semi-
ontinuous in Kg:Remark. Throughout this book, we use the following maximum prin
iplefor semi-
ontinuous fun
tions: 15



An upper semi-
ontinuous fun
tion in a 
ompa
t set attains its maximum.We give the following lemma whi
h will be used without mentioning it.Sin
e the proof is a bit te
hni
al, the reader may skip it over �rst.Proposition 2.4. Assume that u 2 USC(
) (resp., u 2 LSC(
)) is a vis
os-ity subsolution (resp., supersolution) of (2:6) in 
.Then, for any open set 
0 � 
, u is a vis
osity subsolution (resp., supersolution)of (2:6) in 
0.Proof.We only show the assertion for subsolutions sin
e the other 
an be shownsimilarly.For � 2 C2(
0), by Proposition 2.2, we suppose that for some x̂ 2 
0,0 = (u� �)(x̂) > (u� �)(y) for all y 2 
0 n fx̂g:For simpli
ity, we shall suppose x̂ = 0.Choose r > 0 su
h that B2r � 
0. We then 
hoose �k 2 C1(Rn) (k = 1; 2)su
h that 0 � �k � 1 in Rn, �1 + �2 = 1 in Rn,�1 = 1 in Br; and �2 = 1 in Rn nB2r:We de�ne  = �1� +M�2, where M = sup
 u + 1. Sin
e it is easy to verify that 2 C2(Rn), and 0 = (u�  )(0) > (u�  )(x) for x 2 
 n f0g, we leave the proofto the reader. This 
on
ludes the proof. 22.2 Equivalent de�nitionsWe present equivalent de�nitions of vis
osity solutions. However, sin
e wewill need those in the proof of uniqueness for se
ond-order PDEs,the reader may postpone this subse
tion until se
tion 3.3.First, we introdu
e \semi"-jets of fun
tions u : 
! R at x 2 
 byJ2;+u(x) := 8>>><>>>:(p;X) 2 Rn � Sn ��������� u(y) � u(x) + hp; y � xi+12hX(y � x); y � xi+o(jy � xj2) as y 2 
! x 9>>>=>>>;16



andJ2;�u(x) := 8>>><>>>:(p;X) 2 Rn � Sn ��������� u(y) � u(x) + hp; y � xi+12hX(y � x); y � xi+o(jy � xj2) as y 2 
! x 9>>>=>>>; :Note that J2;�u(x) = �J2;+(�u)(x).Remark. We do not impose any 
ontinuity for u in these de�nitions.We re
all the notion of \small order o" in the above: For k � 1,f(x) � o(jxjk) (resp., � o(jxjk)) as x! 0() 8><>: there is ! 2 C([0;1); [0;1)) su
h that !(0) = 0; andsupx2Brnf0g f(x)jxjk � !(r)  resp., infx2Brnf0g f(x)jxjk � �!(jxj)!In the next proposition, we give some basi
 properties of semi-jets: (1)is a relation between semi-jets and 
lassi
al derivatives, and (2) means thatsemi-jets are \de�ned" in dense sets of 
.Proposition 2.5. For u : 
! R, we have the following:(1) If J2;+u(x) \ J2;�u(x) 6= ;, then Du(x) and D2u(x) exist and,J2;+u(x) \ J2;�u(x) = f(Du(x); D2u(x))g:(2) If u 2 USC(
) (resp., u 2 LSC(
)), then
 = �x 2 
 ���� 9xk 2 
 su
h that J2;+u(xk) 6= ;; limk!1xk = x��resp., 
 = �x 2 
 ���� 9xk 2 
 su
h that J2;�u(xk) 6= ;; limk!1xk = x�� :Proof. The proof of (1) is a dire
t 
onsequen
e from the de�nition.We give a proof of the assertion (2) only for J2;+.Fix x 2 
 and 
hoose r > 0 so that Br(x) � 
. For " > 0, we 
an 
hoosex" 2 Br(x) su
h that u(x")� "�1jx" � xj2 = maxy2Br(x)(u(y)� "�1jy � xj2).Sin
e jx" � xj2 � "(maxBr(x)�u(x)), we see that x" 
onverges to x 2 Br(x)17



as "! 0. Thus, we may suppose that x" 2 Br(x) for small " > 0. Hen
e, wehave u(y) � u(x") + 1"(jy � xj2 � jx" � xj2) for all y 2 Br(x):It is easy to 
he
k that (2(x" � x)="; 2"�1I) 2 J2;+u(x"). 2We next introdu
e a sort of 
losure of semi-jets:J2;�u(x) := 8><>:(p;X) 2 Rn � Sn ������� 9xk 2 
 and 9(pk; Xk) 2 J2;�u(xk)su
h that (xk; u(xk); pk; Xk)! (x; u(x); p;X) as k !1 9>=>; :Proposition 2.6. For u : 
 ! R, the following (1); (2); (3) are equiva-lent.8>>>>>><>>>>>>: (1) u is a vis
osity subsolution (resp., supersolution) of (2:6).(2) For x 2 
 and (p;X) 2 J2;+u(x) (resp., J2;�u(x));we have F (x; u(x); p;X) � 0 (resp., � 0):(3) For x 2 
 and (p;X) 2 J2;+u(x) (resp., J2;�u(x));we have F (x; u(x); p;X) � 0 (resp., � 0):Proof. Again, we give a proof of the assertion only for subsolutions.Step 1: (2) =) (3). For x 2 
 and (p;X) 2 J2;+u(x), we 
an �nd (pk; Xk) 2J2;+u(xk) with xk 2 
 su
h that limk!1(xk; u(xk); pk; Xk) = (x; u(x); p;X)and F (xk; u(xk); pk; Xk) � 0;whi
h implies (3) by sending k !1.Step 2: (3) =) (1). For � 2 C2(
), suppose also (u��)(x) = max(u��).Thus, the Taylor expansion of � at x givesu(y) � u(x)+hD�(x); y�xi+12hD2�(x)(y�x); y�xi+o(jx�yj2) as y ! x:Thus, we have (D�(x); D2�(x)) 2 J2;+u(x) � J2;+u(x).Step 3: (1) =) (2). For (p;X) 2 J2;+u(x) (x 2 
), we 
an �nd nonde-
reasing, 
ontinuous ! : [0;1)! [0;1) su
h that !(0) = 0 andu(y) � u(x) + hp; y � xi + 12hX(y � x); y � xi+ jy � xj2!(jy � xj) (2:9)18



as y ! x. In fa
t, by the de�nition of o, we �nd !0 2 C([0;1); [0;1)) su
hthat !0(0) = 0, and!0(r) � supy2Br(x)nfxg 1jx� yj2 �u(y)� u(x)� hp; y � xi � 12hX(y � x); y � xi� ;we verify that !(r) := sup0�t�r !0(t) satis�es (2.9).Now, we de�ne � by�(y) := hp; y � xi+ 12hX(y � x); y � xi+  (jx� yj);where  (t) := Z p3tt �Z 2ss !(r)dr�ds � t2!(t):It is easy to 
he
k that(D�(x); D2�(x)) = (p;X) and (u� �)(x) � (u� �)(y) for y 2 
:Therefore, we 
on
lude the proof. 2Remark. In view of the proof of Step 3, we verify that for x 2 
,J2;+u(x) = ((D�(x); D2�(x)) 2 Rn � Sn ����� 9� 2 C2(
) su
h that u� �attains its maximum at x ) ;J2;�u(x) = ((D�(x); D2�(x)) 2 Rn � Sn ����� 9� 2 C2(
) su
h that u� �attains its minimum at x ) :Thus, we intuitively know J2;�u(x) from their graph.Example. Consider the fun
tion u 2 C([�1; 1℄) in (2.3). From the graphbelow, we may 
on
lude that J2;�u(0) = ;, and J2;+u(0) = (f1g � [0;1)) [(f�1g � [0;1)) [ ((�1; 1)�R). See Fig 2.4.1 and 2.4.2.We omit how to obtain J2;�u(0) of this and the next examples.We shall examine J2;� for dis
ontinuous fun
tions. For instan
e, 
onsiderthe Heaviside fun
tion: u(x) := ( 1 for x � 0;0 for x < 0:19
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We see that J2;�u(0) = ; and J2;+u(0) = (f0g� [0;1))[ ((0;1)�R). SeeFig 2.5.In order to deal with \boundary value problems" in se
tion 5, we preparesome notations: For a set K � Rn, whi
h is not ne
essarily open, we de�nesemi-jets of u : K ! R at x 2 K byJ2;+K u(x) := 8>>><>>>:(p;X) 2 Rn � Sn ��������� u(y) � u(x) + hp; y � xi+12hX(y � x); y � xi+o(jy � xj2) as y 2 K ! x 9>>>=>>>; ;J2;�K u(x) := 8>>><>>>:(p;X) 2 Rn � Sn ��������� u(y) � u(x) + hp; y � xi+12hX(y � x); y � xi+o(jy � xj2) as y 2 K ! x 9>>>=>>>; ;andJ2;�K u(x) := 8><>:(p;X) 2 Rn � Sn ������� 9xk 2 K and 9(pk; Xk) 2 J2;�K u(xk)su
h that (xk; u(xk); pk; Xk)! (x; u(x); p;X) as k !1 9>=>; :Remark. It is obvious to verify thatx 2 
 =) J2;�
 u(x) = J2;�
 u(x) and J2;�
 u(x) = J2;�
 u(x):For x 2 
, we shall simply write J2;�u(x) (resp., J2;�u(x)) for J2;�
 u(x) =J2;�
 u(x) (resp, J2;�
 u(x) = J2;�
 u(x)).Example. Consider u(x) � 0 in K := [0; 1℄. It is easy to observe thatJ2;+u(x) = J2;+K u(x) = f0g � [0;1) provided x 2 (0; 1). It is also easy toverify that J2;+K u(0) = (f0g � [0;1)) [ ((0;1)�R);and J2;�K u(0) = (f0g � (�1; 0℄) [ ((�1; 0)�R):We �nally give some properties of J2;�
 and J2;�
 . Sin
e the proof is easy,we omit it. 21



Proposition 2.7. For u : 
! R,  2 C2(
) and x 2 
, we haveJ2;�
 (u+  )(x) = (D (x); D2 (x)) + J2;�
 u(x)and J2;�
 (u+  )(x) = (D (x); D2 (x)) + J2;�
 u(x):

22



3 Comparison prin
ipleIn this se
tion, we dis
uss the 
omparison prin
iple, whi
h implies the unique-ness of vis
osity solutions when their values on �
 
oin
ide (i:e: under theDiri
hlet boundary 
ondition). In the study of the vis
osity solution theory,the 
omparison prin
iple has been the main issue be
ause the uniqueness ofvis
osity solutions is harder to prove than existen
e and stability of them.First, we re
all some \
lassi
al" 
omparison prin
iples and then, showhow to modify the proof to a modern \vis
osity" version.In this se
tion, the 
omparison prin
iple roughly means that\Comparison prin
iple"vis
osity subsolution uvis
osity supersolution vu � v on �
 9>=>; =) u � v in 
Modifying our proofs of 
omparison theorems below, we obtain a slightlystronger assertion than the above one:vis
osity subsolution uvis
osity supersolution v ) =) max
 (u� v) = max�
 (u� v)We remark that the 
omparison prin
iple implies the uniqueness of (
on-tinuous) vis
osity solutions under the Diri
hlet boundary 
ondition:\Uniqueness for the Diri
hlet problem"vis
osity solutions u and vu = v on �
 ) =) u = v in 
Proof of \the 
omparison prin
iple implies the uniqueness".Sin
e u (resp., v) and v (resp., u), respe
tively, are a vis
osity subsolutionand supersolution, by u = v on �
, the 
omparison prin
iple yields u � v(resp., v � u) in 
. 2In this se
tion, we mainly deal with the following PDE instead of (2.6).�u+ F (x;Du;D2u) = 0 in 
; (3:1)where we suppose that � � 0; (3:2)and F : 
�Rn � Sn ! R is 
ontinuous: (3:3)23



3.1 Classi
al 
omparison prin
ipleIn this subse
tion, we show that if one of vis
osity sub- and supersolutionsis a 
lassi
al one, then the 
omparison prin
iple holds true. We 
all this the\
lassi
al" 
omparison prin
iple.3.1.1 Degenerate ellipti
 PDEsWe �rst 
onsider the 
ase when F is (degenerate) ellipti
 and � > 0.Proposition 3.1. Assume that � > 0 and (3:3) hold. Assume alsothat F is ellipti
. Let u 2 USC(
) (resp., v 2 LSC(
)) be a vis
ositysubsolution (resp., supersolution) of (3:1) and v 2 LSC(
) \ C2(
) (resp.,u 2 USC(
) \ C2(
)) a 
lassi
al supersolution (resp., subsolution) of (3:1).If u � v on �
, then u � v in 
.Proof. We only prove the assertion when u is a vis
osity subsolution of(3.1) sin
e the other one 
an be shown similarly.Set max
(u� v) =: � and 
hoose x̂ 2 
 su
h that (u� v)(x̂) = �.Suppose that � > 0 and then, we will get a 
ontradi
tion. We note thatx̂ 2 
 be
ause u � v on �
.Thus, the de�nition of u and v respe
tively yields�u(x̂) + F (x̂; Dv(x̂); D2v(x̂)) � 0 � �v(x̂) + F (x̂; Dv(x̂); D2v(x̂)):Hen
e, by these inequalities, we have�� = �(u� v)(x̂) � 0;whi
h 
ontradi
ts � > 0. 23.1.2 Uniformly ellipti
 PDEsNext, we present the 
omparison prin
iple when � = 0 but F is uniformlyellipti
 in the following sense. Noti
e that if � > 0 and F is uniformly ellip-ti
, then Proposition 3.1 yields Proposition 3.3 below be
ause our uniformellipti
ity implies (degenerate) ellipti
ity.Throughout this book, we freeze the \uniform ellipti
ity" 
onstants:0 < � � �:24



With these 
onstants, we introdu
e the Pu

i's operators: For X 2 Sn,P+(X) := maxf�tra
e(AX) j �I � A � �I for A 2 Sng;P�(X) := minf�tra
e(AX) j �I � A � �I for A 2 Sng:We give some properties of P�. We omit the proof sin
e it is elementary.Proposition 3.2. For X; Y 2 Sn, we have the following:(1) P+(X) = �P�(�X);(2) P�(�X) = �P�(X) for � � 0;(3) P+ is 
onvex, P� is 
on
ave,(4) ( P�(X) + P�(Y ) � P�(X + Y ) � P�(X) + P+(Y )� P+(X + Y ) � P+(X) + P+(Y ):De�nition. We say that F : 
�Rn�Sn ! R is uniformly ellipti
(with the uniform ellipti
ity 
onstants 0 < � � �) ifP�(X � Y ) � F (x; p;X)� F (x; p; Y ) � P+(X � Y )for x 2 
; p 2 Rn, and X; Y 2 Sn.We also suppose the following 
ontinuity on F with respe
t to p 2 Rn:There is � > 0 su
h thatjF (x; p;X)� F (x; p0; X)j � �jp� p0j (3:4)for x 2 
; p; p0 2 Rn, and X 2 Sn.Proposition 3.3. Assume that (3:2), (3:3) and (3:4) hold. Assume alsothat F is uniformly ellipti
. Let u 2 USC(
) (resp., v 2 LSC(
)) be avis
osity subsolution (resp., supersolution) of (3:1) and v 2 LSC(
)\C2(
)(resp., u 2 USC(
)\C2(
)) a 
lassi
al supersolution (resp., subsolution) of(3:1).If u � v on �
, then u � v in 
.Proof. We give a proof only when u is a vis
osity subsolution and v a
lassi
al supersolution of (3.1). 25



Suppose that max
(u � v) =: � > 0. Then, we will get a 
ontradi
tionagain.For " > 0, we set �"(x) = "eÆx1 , where Æ := maxf(� + 1)=�; � + 1g > 0.We next 
hoose " > 0 so small that"maxx2
 eÆx1 � �2Let x̂ 2 
 be the point su
h that (u�v+�")(x̂) = max
(u�v+�") � �.By the 
hoi
e of " > 0, sin
e u � v on �
, we see that x̂ 2 
.From the de�nition of vis
osity subsolutions, we have�u(x̂) + F (x̂; D(v � �")(x̂); D2(v � �")(x̂)) � 0:By the uniform ellipti
ity and (3.4), we have�u(x̂) + F (x̂; Dv(x̂); D2v(x̂)) + P�(�D2�"(x̂))� �jD�"(x̂)j � 0:Noting that jD�"(x̂)j � Æ"eÆx̂1 and P�(�D2�"(x̂)) � Æ2"�eÆx̂1 , we have�u(x̂) + F (x̂; Dv(x̂); D2v(x̂)) + Æ"(�Æ � �)eÆx̂1 � 0: (3:5)Sin
e v is a 
lassi
al supersolution of (3.1), by (3.5) and Æ � (� + 1)=�, wehave �(u� v)(x̂) + Æ"eÆx̂1 � 0:Hen
e, we have �(� � �"(x̂)) � �Æ"eÆx̂1 ;whi
h gives a 
ontradi
tion be
ause Æ � � + 1. 23.2 Comparison prin
iple for �rst-order PDEsIn this subse
tion, without assuming that one of vis
osity sub- and supersolu-tions is a 
lassi
al one, we establish the 
omparison prin
iple when F in (3.1)does not depend on D2u; �rst-order PDEs. We will study the 
omparisonprin
iple for se
ond-order ones in the next subse
tion.In the vis
osity solution theory, Theorem 3.4 below was the �rst surprisingresult.Here, instead of (3.1), we shall 
onsider the following PDE:�u+H(x;Du) = 0 in 
: (3:6)26



We shall suppose that � > 0; (3:7)and that there is a 
ontinuous fun
tion !H : [0;1) ! [0;1) su
h that!H(0) = 0 andjH(x; p)�H(y; p)j � !H(jx� yj(1 + jpj)) for x; y 2 
 and p 2 Rn: (3:8)In what follows, we will 
all !H in (3.8) a modulus of 
ontinuity. Fornotational simpli
ity, we use the following notation:M := f! : [0;1)! [0;1) j !(�) is 
ontinuous, !(0) = 0g:Theorem 3.4. Assume that (3:7) and (3:8) hold. Let u 2 USC(
) andv 2 LSC(
) be a vis
osity sub- and supersolution of (3:6), respe
tively.If u � v on �
, then u � v in 
.Proof. Suppose max
(u � v) =: � > 0 as usual. Then, we will get a
ontradi
tion.Noti
e that sin
e both u and v may not be di�erentiable, we 
annot usethe same argument as in Proposition 3.1.Now, we present the most important idea in the theory of vis
osity solu-tions to over
ome this diÆ
ulty.Setting �"(x; y) := u(x) � v(y) � (2")�1jx � yj2 for " > 0, we 
hoose(x"; y") 2 
� 
 su
h that�"(x"; y") = maxx;y2
�"(x; y):Noting that �"(x"; y") � maxx2
 �"(x; x) = �, we havejx" � y"j22" � u(x")� v(y")� �: (3:9)Sin
e 
 is 
ompa
t, we 
an �nd x̂; ŷ 2 
, and "k > 0 su
h that limk!1 "k = 0and limk!1(x"k ; y"k) = (x̂; ŷ).We shall simply write " for "k (i:e: in what follows, \"! 0" means that"k ! 0 when k !1).Setting M := max
 u�min
 v, by (3.9), we havejx" � y"j2 � 2"M ! 0 (as "! 0):27



Thus, we have x̂ = ŷ.Sin
e (3.9) again implies0 � lim inf"!0 jx" � y"j22" � lim sup"!0 jx" � y"j22"� lim sup"!0 (u(x")� v(y"))� �� (u� v)(x̂)� � � 0;we have lim"!0 jx" � y"j2" = 0: (3:10)Moreover, sin
e (u � v)(x̂) = � > 0, we have x̂ 2 
 from the assumptionu � v on �
. Thus, for small " > 0, we may suppose that (x"; y") 2 
� 
.Furthermore, ignoring the left hand side in (3.9), we have� � lim inf"!0 (u(x")� v(y")): (3:11)Taking �(x) := v(y") + (2")�1jx � y"j2, we see that u � � attains itsmaximum at x" 2 
. Hen
e, from the de�nition of vis
osity subsolutions, wehave �u(x") +H �x"; x" � y"" � � 0:On the other hand, taking  (y) := u(x") � (2")�1jy � x"j2, we see thatv �  attains its minimum at y" 2 
. Thus, from the de�nition of vis
ositysupersolutions, we have�v(y") +H �y"; x" � y"" � � 0:The above two inequalities yield�(u(x")� v(y")) � !H  jx" � y"j+ jx" � y"j2" ! :Sending "! 0 in the above together with (3.10) and (3.11), we have �� � 0,whi
h is a 
ontradi
tion. 2Remark. In the above proof, we 
ould show that lim"!0 u(x") = u(x̂) andlim"!0 v(y") = v(x̂) although we do not need this fa
t. In fa
t, by (3.9), wehave v(y") � u(x")� �;28



whi
h implies thatv(x̂) � lim inf"!0 v(y") � lim inf"!0 u(x")� � � lim sup"!0 u(x")� � � u(x̂)� �;and v(x̂) � lim inf"!0 v(y") � lim sup"!0 v(x") � lim sup"!0 u(x")� � � u(x̂)� �:Hen
e, sin
e all the inequalities be
ome the equalities, we haveu(x̂) = lim inf"!0 u(x") = lim sup"!0 u(x") and v(x̂) = lim inf"!0 v(y") = lim sup"!0 v(y"):We remark here that we 
annot apply Theorem 3.4 to the eikonal equation(2.1) be
ause we have to suppose � > 0 in the above proof.We shall modify the above proof so that the 
omparison prin
iple forvis
osity solutions of (2.1) holds.To simplify our hypotheses, we shall 
onsider the following PDE:H(x;Du)� f(x) = 0 in 
: (3:12)Here, we suppose that H has homogeneous degree � > 0 with respe
t to these
ond variable; there is � > 0 su
h thatH(x; �p) = ��H(x; p) for x 2 
; p 2 Rn and � > 0: (3:13)To re
over the la
k of assumption � > 0, we suppose the positivity of f 2C(
); there is � > 0 su
h thatminx2
 f(x) =: � > 0: (3:14)Example. When H(x; p) = jpj2 (i:e: � = 2) and f(x) � 1 ( i:e: � = 1),equation (3.12) be
omes (2.1).The se
ond 
omparison prin
iple for �rst-order PDEs is as follows:Theorem 3.5. Assume that (3:8), (3:13) and (3:14) hold. Let u 2USC(
) and v 2 LSC(
) be a vis
osity sub- and supersolution of (3:12),respe
tively.If u � v on �
, then u � v in 
. 29



Proof. Suppose that max
(u� v) =: � > 0 as usual. Then, we will get a
ontradi
tion.If we 
hoose � 2 (0; 1) so that(1� �)max
 u � �2 ;then we easily verify that max
 (�u� v) =: � � �2 :We note that for any z 2 
 su
h that (�u� v)(z) = � , we may supposez 2 
. In fa
t, otherwise (i:e: z 2 �
), if we further suppose that � < 1 is
lose to 1 so that �(1 � �)min�
 v � �=4, then the assumption (u � v on�
) implies �2 � � = �u(z)� v(z) � (�� 1)v(z) � �4 ;whi
h is a 
ontradi
tion. For simpli
ity, we shall omit writing the dependen
eon � for � and (x"; y") below.At this stage, we shall use the idea in the proof of Theorem 3.4: Considerthe mapping �" : 
� 
! R de�ned by�"(x; y) := �u(x)� v(y)� jx� yj22" :Choose (x"; y") 2 
 � 
 su
h that maxx;y2
 �"(x; y) = �"(x"; y"). Notethat �"(x"; y") � � � �=2.As in the proof of Theorem 3.4, we may suppose that lim"!0(x"; y") =(x̂; ŷ) for some (x̂; ŷ) 2 
 � 
 (by taking a subsequen
e if ne
essary). Also,we easily see thatjx" � y"j22" � �u(x")� v(y")� � �M� := �max
 u�min
 v: (3:15)Thus, sending " ! 0, we have x̂ = ŷ. Hen
e, (3.15) implies that �u(x̂) �v(x̂) = � , whi
h yields x̂ 2 
 be
ause of the 
hoi
e of �. Thus, we see that(x"; y") 2 
� 
 for small " > 0.Moreover, (3.15) again implieslim"!0 jx" � y"j2" = 0: (3:16)30



Now, taking �(x) := (v(y")+(2")�1jx�y"j2)=�, we see that u�� attainsits maximum at x" 2 
. Thus, we haveH  x"; x" � y"�" ! � f(x"):Hen
e, by (3.13), we haveH �x"; x" � y"" � � ��f(x"): (3:17)On the other hand, taking  (y) = �u(x") � (2")�1jy � x"j2, we see thatv �  attains its minimum at y" 2 
. Thus, we haveH �y"; x" � y"" � � f(y"): (3:18)Combining (3.18) with (3.17), we havef(y")� ��f(x") � H �y"; x" � y"" ��H �x"; x" � y"" �� !H  jx" � y"j 1 + jx" � y"j" !! :Sending "! 0 in the above with (3.16), we have(1� ��)f(x̂) � 0;whi
h 
ontradi
ts (3.14). 23.3 Extension to se
ond-order PDEsIn this subse
tion, assuming a key lemma, we will present the 
omparisonprin
iple for fully nonlinear, se
ond-order, (degenerate) ellipti
 PDEs (3.1).We �rst remark that the argument of the proof of the 
omparison prin
iplefor �rst-order PDEs 
annot be applied at least immediately.Let us have a look at the diÆ
ulty. Consider the following simple PDE:�u�4u = 0; (3:19)where � > 0. As one 
an guess, if the argument does not work for this\easiest" PDE, then it must be hopeless for general PDEs.31



However, we emphasize that the same argument as in the proof of The-orem 3.4 does not work. In fa
t, let u 2 USC(
) and v 2 LSC(
) be avis
osity sub- and supersolution of (3.19), respe
tively, su
h that u � v on�
. Setting �"(x; y) := u(x) � v(y) � (2")�1jx � yj2 as usual, we 
hoose(x"; y") 2 
� 
 so that maxx;y2
 �"(x; y) = �"(x"; y") > 0 as before.We may suppose that (x"; y") 2 
� 
 
onverges to (x̂; x̂) (as "! 0) forsome x̂ 2 
 su
h that (u � v)(x̂) > 0. From the de�nitions of u and v, wehave �u(x")� n" � 0 � �v(y") + n" :Hen
e, we only have �(u(x")� v(y")) � 2n" ;whi
h does not give any 
ontradi
tion as "! 0.How 
an we go beyond this diÆ
ulty ?In 1983, P.-L. Lions �rst obtained the uniqueness of vis
osity solutionsfor ellipti
 PDEs arising in sto
hasti
 optimal 
ontrol problems (i:e: Bell-man equations; F is 
onvex in (Du;D2u)). However, his argument heavilydepends on sto
hasti
 representation of vis
osity solutions as \value fun
-tions". Moreover, it seems hard to extend the result to Isaa
s equations; Fis fully nonlinear.The breakthrough was done by Jensen in 1988 in 
ase when the 
oeÆ-
ients on the se
ond derivatives of the PDE are 
onstant. His argument reliespurely on \real-analysis" and 
an work even for fully nonlinear PDEs.Then, Ishii in 1989 extended Jensen's result to enable us to apply toellipti
 PDEs with variable 
oeÆ
ients. We present here the so-
alled Ishii'slemma, whi
h will be proved in Appendix.Lemma 3.6. (Ishii's lemma) Let u and w be in USC(
). For � 2C2(
� 
), let (x̂; ŷ) 2 
� 
 be a point su
h thatmaxx;y2
(u(x) + w(y)� �(x; y)) = u(x̂) + w(ŷ)� �(x̂; ŷ):Then, for ea
h � > 1, there are X = X(�); Y = Y (�) 2 Sn su
h that(Dx�(x̂; ŷ); X) 2 J2;+
 u(x̂); (Dy�(x̂; ŷ); Y ) 2 J2;+
 w(ŷ);32



and �(� + kAk) I 00 I ! �  X 00 Y ! � A + 1�A2;where A = D2�(x̂; ŷ) 2 S2n.Remark.We note that if we suppose that u; w 2 C2(
) and (x̂; ŷ) 2 
�
in the hypothesis, then we easily haveX = D2u(x̂); Y = D2w(ŷ); and  X 00 Y ! � A:Thus, the last matrix inequality means that when u and w are only 
ontin-uous, we get some error term ��1A2, where � > 1 will be large.We also note that for �(x; y) := jx� yj2=(2"), we haveA := D2�(x̂; ŷ) = 1"  I �I�I I ! and kAk = 2" : (3:20)For the last identity, sin
ekAk2 := sup(*A xy ! ; A xy !+����� jxj2 + jyj2 = 1) ;the triangle inequality yields kAk2 = 2"�2 supfjx � yj2 j jxj2 + jyj2 = 1g �4="2. On the other hand, taking x = �y (i:e: jxj2 = 1=2) in the supremumof the de�nition of kAk2 in the above, we have kAk2 � 4="2.Remark. The other way to show the above identity, we may use the fa
tthat for B 2 Sn, in general,kBk = maxfj�kj j �k is the eigen-value of Bg:3.3.1 Degenerate ellipti
 PDEsNow, we give our hypotheses on F , whi
h is 
alled the stru
ture 
ondition.Stru
ture 
onditionThere is an !F 2 M su
h that if X; Y 2 Sn and � > 1 satisfy�3� I 00 I ! �  X 00 �Y ! � 3� I �I�I I ! ;then F (y; �(x� y); Y )� F (x; �(x� y); X)� !F (jx� yj(1 + �jx� yj)) for x; y 2 
: (3:21)
33



In se
tion 3.3.2, we will see that if F satis�es (3.21), then it is ellipti
.We �rst prove the 
omparison prin
iple when (3.21) holds for F usingthis lemma. Afterward, we will explain why assumption (3.21) is reasonable.Theorem 3.7. Assume that � > 0 and (3:21) hold. Let u 2 USC(
)and v 2 LSC(
) be a vis
osity sub- and supersolution of (3:1), respe
tively.If u � v on �
, then u � v in 
.Proof. Suppose that max
(u� v) =: � > 0 as usual. Then, we will get a
ontradi
tion.Again, for " > 0, 
onsider the mapping �" : 
� 
! R de�ned by�"(x; y) = u(x)� v(y)� 12" jx� yj2:Let (x"; y") 2 
�
 be a point su
h that maxx;y2
 �"(x; y) = �"(x"; y") ��. As in the proof of Theorem 3.4, we may suppose thatlim"!0(x"; y") = (x̂; x̂) for some x̂ 2 
 (i:e: x"; y" 2 
 for small " > 0):Moreover, sin
e we have (u� v)(x̂) = �,lim"!0 jx" � y"j2" = 0; (3:22)and � � lim inf"!0 (u(x")� v(y")): (3:23)In view of Lemma 3.6 (taking w := �v, � := 1=", �(x; y) = jx�yj2=(2"))and its Remark, we �nd X; Y 2 Sn su
h that�x" � y"" ;X� 2 �J2;+u(x"); �x" � y"" ; Y � 2 �J2;�v(y");and �3"  I 00 I ! �  X 00 �Y ! � 3"  I �I�I I ! :Thus, the equivalent de�nition in Proposition 2.6 implies that�u(x") + F �x"; x" � y"" ;X� � 0 � �v(y") + F �y"; x" � y"" ; Y � :34



Hen
e, by virtue of our assumption (3.21), we have�(u(x")� v(y")) � !F  jx" � y"j+ jx" � y"j2" ! : (3:24)Taking the limit in�mum, as " ! 0, together with (3.22) and (3.23) in theabove, we have �� � 0;whi
h is a 
ontradi
tion. 23.3.2 Remarks on the stru
ture 
onditionIn order to ensure that assumption (3.21) is reasonable, we �rst present someexamples. For this purpose, we 
onsider the Isaa
s equation as in se
tion1.2.2. F (x; p;X) := supa2A infb2BfLa;b(x; p;X)� f(x; a; b)g;whereLa;b(x; p;X) := �tra
e(A(x; a; b)X) + hg(x; a; b); pi for (a; b) 2 A� B:If we suppose that A and B are 
ompa
t sets in Rm (for some m � 1),and that the 
oeÆ
ients in the above and f(�; a; b) satisfy the hypothesesbelow, then F satis�es (3.21).8>>>>>>>>>>>>><>>>>>>>>>>>>>:
(1) 9M1 > 0 and 9�ij(�; a; b) : 
! R su
h that Aij(x; a; b) =mXk=1�ik(x; a; b)�jk(x; a; b); and j�jk(x; a; b)� �jk(y; a; b)j �M1jx� yjfor x; y 2 
; i; j = 1; : : : ; n; k = 1; : : : ; m; a 2 A; b 2 B;(2) 9M2 > 0 su
h that jgi(x; a; b)� gi(y; a; b)j �M2jx� yj for x; y 2 
;i = 1; : : : ; n; a 2 A; b 2 B;(3) 9!f 2 M su
h thatjf(x; a; b)� f(y; a; b)j � !f(jx� yj) for x; y 2 
; a 2 A; b 2 B:We shall show (3.21) only whenF (x; p;X) := � nXi;j=1 mXk=1�ik(x; a; b)�jk(x; a; b)Xij35



for a �xed (a; b) 2 A�B be
ause we 
an modify the proof below to generalF . Thus, we shall omit writing indi
es a and b.To verify assumption (3.21), we 
hoose X; Y 2 Sn su
h that X 00 �Y ! � 3� I �I�I I ! :Setting �k =t(�1k(x); : : : ; �nk(x)) and �k =t(�1k(y); : : : ; �nk(y)) for any�xed k 2 f1; 2; : : : ; mg, we have* X 00 �Y ! �k�k ! ; �k�k !+ � 3�* I �I�I I ! �k�k ! ; �k�k !+= 3�j�k � �kj2� 3�nM21 jx� yj2:Therefore, taking the summation over k 2 f1; : : : ; mg, we haveF (y; �(x� y); Y )� F (x; �(x� y); X) � nXi;j=1(�Aij(y)Yij + Aij(x)Xij)= mXk=1(�hY �k; �ki+ hX�k; �ki)� 3�mnM21 jx� yj2: 2We next give other reasons why (3.21) is a suitable assumption. Thereader 
an skip the proof of the following proposition if he/she feels that theabove reason is enough to adapt (3.21).Proposition 3.8. (1) (3:21) implies ellipti
ity.(2) Assume that F is uniformly ellipti
. If �! 2 M satis�es that supr�0 �!(r)=(r +1) <1, and jF (x; p;X) � F (y; p;X)j � �!(jx� yj(kXk + jpj+ 1)) (3:25)for x; y 2 
; p 2 Rn;X 2 Sn, then (3:21) holds for F .Proof. For a proof of (1), we refer to Remark 3.4 in [6℄.For the reader's 
onvenien
e, we give a proof of (2) whi
h is essentially usedin a paper by Ishii-Lions (1990). Let X;Y 2 Sn satisfy the matrix inequality in(3.21). Note that X � Y . 36



Multiplying  �I �I�I I ! to the last matrix inequality from both sides, wehave  X � Y X + YX + Y X � Y ! � 12� 0 00 I ! :Thus, multiplying  �s� ! for s 2 R and �; � 2 Rn with j�j = j�j = 1, we see that0 � (12� � h(X � Y )�; �i)s2 � 2h(X + Y )�; �is� h(X � Y )�; �i:Hen
e, we havejh(X + Y )�; �ij2 � jh(X � Y )�; �ij(12� + jh(X � Y )�; �ij);whi
h implies kX + Y k � kX � Y k1=2(12�+ kX � Y k)1=2:Thus, we havekXk � 12(kX � Y k+ kX + Y k) � kX � Y k1=2(6�+ kX � Y k)1=2:Sin
e X � Y (i:e: the eigen-values of X � Y are non-positive), we see thatF (y; p;X) � F (y; p; Y ) � P�(X � Y ) � �kX � Y k: (3:26)For the last inequality, we re
all Remark after Lemma 3.6.Sin
e we may suppose �! is 
on
ave, for any �xed " > 0, there is M" > 0 su
hthat �!(r) � "+M"r and �!(r) = inf">0("+M"r) for r � 0. By (3.25) and (3.26),sin
e kXk � 3� and kY k � 3�, we haveF (y; p; Y )� F (x; p;X)� "+M"jx� yj(jpj+ 1) + sup0�t�6�nM"jx� yjt1=2(6�+ t)1=2 � �to :Noting that M"jx� yjt1=2(6�+ t)1=2 � �t � 3�M2" �jx� yj2;we have F (y; �(x� y); Y )� F (x; �(x� y);X)� "+M"jx� yj(�jx� yj+ 1) + 3��1M2" �jx� yj2;whi
h implies the assertion by taking the in�mum over " > 0. 237



3.3.3 Uniformly ellipti
 PDEsWe shall give a 
omparison result 
orresponding to Proposition 3.3; F isuniformly ellipti
 and � � 0.Theorem 3.9. Assume that (3:2), (3:3), (3:4) and (3:21) hold. Assumealso that F is uniformly ellipti
. Let u 2 USC(
) and v 2 LSC(
) be avis
osity sub- and supersolution of (3:1), respe
tively.If u � v on �
, then u � v in 
.Remark. As in Proposition 3.3, we may suppose � = 0.Proof. Suppose that max
(u� v) =: � > 0.Setting � := (�+ 1)=�, we 
hoose Æ > 0 so thatÆmaxx2
 e�x1 � �2 :We then set � := maxx2
(u(x)� v(x) + Æe�x1) � � > 0.Putting �(x; y) := (2")�1jx � yj2 � Æe�x1 , we let (x"; y") 2 
 � 
 be themaximum point of u(x)� v(y)� �(x; y) over 
� 
.By the 
ompa
tness of 
, we may suppose that (x"; y")! (x̂; ŷ) 2 
�
as "! 0 (taking a subsequen
e if ne
essary). Sin
e u(x")�v(y") � �(x"; y"),we have jx"�y"j2 � 2"(max
 u�min
 v+2�1�) and moreover, x̂ = ŷ. Hen
e,we have u(x̂)� v(x̂) + Æe�x̂1 � �;whi
h implies x̂ 2 
 be
ause of our 
hoi
e of Æ. Thus, we may suppose that(x"; y") 2 
� 
 for small " > 0. Moreover, as before, we see thatlim"!0 jx" � y"j2" = 0: (3:27)Applying Lemma 3.6 to û(x) := u(x)+Æe�x1 and�v(y), we �ndX; Y 2 Snsu
h that ((x" � y")=";X) 2 J2;+û(x"), ((x" � y")="; Y ) 2 J2;�v(y"), and�3"  I OO I ! �  X OO �Y ! � 3"  I �I�I I ! :We shall simply write x and y for x" and y", respe
tively.38



Note that Proposition 2.7 implies�x� y" � Æ�e�x1e1; X � Æ�2e�x1I1� 2 J2;+u(x);where e1 2 Rn and I1 2 Sn are given bye1 := 0BBBB� 10...0 1CCCCA and I1 := 0BBBB� 1 0 � � � 00 0 � � � 0... ... ...0 0 � � � 0 1CCCCA :Setting r := Æ�e�x1 , from the de�nition of u and v, we have0 � F �y; x� y" ; Y �� F �x; x� y" � re1; X � �rI1� :In view of the uniform ellipti
ity and (3.4), we have0 � r�+ �rP+(I1) + F �y; x� y" ; Y �� F �x; x� y" ;X� :Hen
e, by (3.21) and the de�nition of P+, we have0 � r(�� ��) + !F  jx� yj+ jx� yj2" ! ;whi
h together with (3.27) yields 0 � Æ�e�x̂1(����). This is a 
ontradi
tionbe
ause of our 
hoi
e of � > 0. 2
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4 Existen
e resultsIn this se
tion, we present some existen
e results for vis
osity solutions ofse
ond-order (degenerate) ellipti
 PDEs.We �rst present a 
onvenient existen
e result via Perron's method, whi
hwas established by Ishii in 1987.Next, for Bellman and Isaa
s equations, we give representation formulasfor vis
osity solutions. From the dynami
 programming prin
iple below, wewill realize how natural the de�nition of vis
osity solutions is.4.1 Perron's methodIn order to introdu
e Perron's method, we need the notion of vis
osity solu-tions for semi-
ontinuous fun
tions.De�nition. For any fun
tion u : 
 ! R, we denote the upper andlower semi-
ontinuous envelope of u by u� and u�, respe
tively, whi
h arede�ned byu�(x) = lim"!0 supy2B"(x)\
 u(y) and u�(x) = lim"!0 infy2B"(x)\
 u(y):We give some elementary properties for u� and u� without proofs.Proposition 4.1. For u : 
! R, we have(1) u�(x) � u(x) � u�(x) for x 2 
;(2) u�(x) = �(�u)�(x) for x 2 
;(3) u�(resp., u�) is upper (resp., lower) semi-
ontinuous in 
; i:e:lim supy!x u�(y) � u�(x); (resp., lim infy!x u�(y) � u�(x)) for x 2 
;(4) if u is upper (resp., lower) semi-
ontinuous in 
;then u(x) = u�(x) (resp., u(x) = u�(x)) for x 2 
:With these notations, we give our de�nition of vis
osity solutions ofF (x; u;Du;D2u) = 0 in 
: (4:1)De�nition. We 
all u : 
! R a vis
osity subsolution (resp., superso-lution) of (4.1) if u� (resp., u�) is a vis
osity subsolution (resp., supersolution)of (4.1). 40



We 
all u : 
 ! R a vis
osity solution of (4.1) if it is both a vis
ositysub- and supersolution of (4.1).Remark. We note that we supposed that vis
osity sub- and supersolu-tions are, respe
tively, upper and lower semi-
ontinuous in our 
omparisonprin
iple in se
tion 3. Adapting the above new de�nition, we omit the semi-
ontinuity for vis
osity sub- and supersolutions in Propositions 3.1, 3.3 andTheorems 3.4, 3.5, 3.7, 3.9.In what follows, we use the above de�nition.Remark. We remark that the 
omparison prin
iple Theorem 3.7 impliesthe 
ontinuity of vis
osity solutions.\Continuity of vis
osity solutions"vis
osity solution usatis�es u� = u� on �
 ) =) u 2 C(
)Proof of the 
ontinuity of u. Sin
e u� and u� are, respe
tively, a vis
ositysubsolution and a vis
osity supersolution and u� � u� on �
, Theorem 3.7yields u� � u� in 
. Be
ause u� � u � u� in 
, we have u = u� = u� in 
;u 2 C(
). 2We �rst show that the \point-wise" supremum (resp., in�mum) of vis
os-ity subsolutions (resp., supersolution) be
omes a vis
osity subsolution (resp.,supersolution).Theorem 4.2. Let S be a non-empty set of upper (resp., lower) semi-
ontinuous vis
osity subsolutions (resp., supersolutions) of (4:1).Set u(x) := supv2S v(x) (resp., u(x) := infv2S v(x)). If supx2K ju(x)j <1 for any 
ompa
t sets K � 
, then u is a vis
osity subsolution (resp.,supersolution) of (4:1).Proof.We only give a proof for subsolutions sin
e the other 
an be provedin a symmetri
 way.For x̂ 2 
, we suppose that 0 = (u���)(x̂) > (u���)(x) for x 2 
 nfx̂gand � 2 C2(
). We shall show thatF (x̂; �(x̂); D�(x̂); D2�(x̂)) � 0: (4:2)41



Let r > 0 be su
h that B2r(x̂) � 
. We 
an �nd s > 0 su
h thatmax�Br(x̂)(u� � �) � �s: (4:3)We 
hoose xk 2 Br(x̂) su
h that limk!1 xk = x̂, u�(x̂) � k�1 � u(xk)and j�(xk)��(x̂)j < 1=k. Moreover, we sele
t upper semi-
ontinuous uk 2 Ssu
h that uk(xk) + k�1 � u(xk).By (4.3), for 3=k < s, we havemax�Br(x̂)(uk � �) < (uk � �)(xk):Thus, for large k > 3=s, there is yk 2 Br(x̂) su
h that uk � � attains itsmaximum over Br(x̂) at yk. Hen
e, we haveF (yk; uk(yk); D�(yk); D2�(yk)) � 0: (4:4)Taking a subsequen
e if ne
essary, we may suppose z := limk!1 yk. Sin
e(u� � �)(x̂) � (uk � �)(xk) + 3k � (uk � �)(yk) + 3k � (u� � �)(yk) + 3kby the upper semi-
ontinuity of u�, we have(u� � �)(x̂) � (u� � �)(z);whi
h yields z = x̂, and moreover, limk!1 uk(yk) = u�(x̂) = �(x̂). Therefore,sending k!1 in (4.4), by the 
ontinuity of F , we obtain (4.2). 2Our �rst existen
e result is as follows.Theorem 4.3. Assume that F is ellipti
. Assume also that there area vis
osity subsolution � 2 USC(
) \ L1lo
(
) and a vis
osity supersolution� 2 LSC(
) \ L1lo
(
) of (4:1) su
h that� � � in 
:Then, u(x) := supv2S v(x) (resp., û(x) = infw2Ŝ w(x)) is a vis
osity solu-tion of (4:1), whereS := ( v 2 USC(
) ����� v is a vis
osity subsolutionof (4:1) su
h that � � v � � in 
 )42



 resp., Ŝ := ( w 2 LSC(
) ����� w is a vis
osity supersolutionof (4:1) su
h that � � w � � in 
 )! :Sket
h of proof. We only give a proof for u sin
e the other 
an be shownin a symmetri
 way.First of all, we noti
e that S 6= ; sin
e � 2 S.Due to Theorem 4.2, we know that u is a vis
osity subsolution of (4.1).Thus, we only need to show that it is a vis
osity supersolution of (4.1).Assume that u 2 LSC(
). Assuming that 0 = (u � �)(x̂) < (u � �)(x)for x 2 
 n fx̂g and � 2 C2(
), we shall show thatF (x̂; �(x̂); D�(x̂); D2�(x̂)) � 0:Suppose that this 
on
lusion fails; there is � > 0 su
h thatF (x̂; �(x̂); D�(x̂); D2�(x̂)) � �2�:Hen
e, there is r > 0 su
h thatF (x; �(x) + t; D�(x); D2�(x)) � �� for x 2 Br(x̂) � 
 and jtj � r: (4:5)First, we 
laim that �(x̂) < �(x̂). Indeed, otherwise, sin
e � � u � � in
, � � � attains its minimum at x̂ 2 
. See Fig 4.1.

Fig 4.1

PSfrag repla
ements y = �(x)y = u(x)y = �(x)x̂ xy = �(x)

Hen
e, from the de�nition of supersolution �, we get a 
ontradi
tion to(4.5) for x = x̂ and t = 0. 43



We may suppose that �(x̂) < �(x̂) sin
e, otherwise, � = � = � at x̂.Setting 3�̂ := �(x̂) � u(x̂) > 0, from the lower and upper semi-
ontinuity of� and �, respe
tively, we may 
hoose s 2 (0; r℄ su
h that�(x) + �̂ � �(x) + 2�̂ � �(x) for x 2 B2s(x̂):Moreover, we 
an 
hoose " 2 (0; s) and �0 2 (0;minf�̂ ; rg) su
h that�(x) + 2�0 � u(x) for x 2 Bs+"(x̂) nBs�"(x̂).If we 
an de�ne a fun
tion w 2 S su
h that w(x̂) > u(x̂), then we �nishour proof be
ause of the maximality of u at ea
h point.Now, we setw(x) := ( maxfu(x); �(x) + �0g in Bs(x̂);u(x) in 
 nBs(x̂):See Fig 4.2.

Fig 4.2

PSfrag repla
ements y = �(x)y = u(x)y = �(x)
y = w(x) x̂ xy = �(x) + �0


3�̂

It suÆ
es to show that w 2 S. Be
ause of our 
hoi
e of �0; s > 0, it iseasy to see � � w � � in 
. Thus, we only need to show that w is a vis
ositysubsolution of (4.1).To this end, we suppose that (w� �  )(x) � (w� �  )(z) = 0 for x 2 
,and then we will get F (z; w�(z); D (z); D2 (z)) � 0: (4:6)If z 2 
nBs(x̂) =: 
0, by Proposition 2.4, then u�� attains its maximumat z 2 
0, we get (4.6). 44



If z 2 �Bs(x̂), then (4.6) holds again sin
e w = u in Bs+"(x̂) nBs�"(x̂).It remains to show (4.6) when z 2 Bs(x̂). Sin
e � + �0 is a vis
ositysubsolution of (4.1) in Bs(x̂), Theorem 4.2 with 
 := Bs(x̂) yields (4.6). 2Corre
t proof, whi
h the reader may skip �rst. Sin
e we do not suppose thatu 2 LSC(
) here, we have to work with u�.Suppose that 0 = (u���)(x̂) < (u���)(x) for x 2 
nfx̂g for some � 2 C2(
),x̂ 2 
, � > 0 and F (x̂; �(x̂);D�(x̂);D2�(x̂)) � �2�:Hen
e, we get (4.5) even in this 
ase.We also show that the w de�ned in the above is a vis
osity subsolution of (4.1).It only remains to 
he
k that sup
(w � u) > 0.In fa
t, 
hoosing xk 2 B1=k(x̂) su
h thatu�(x̂) + 1k � u(xk);we easily verify that if 1=k � minf�0=2; sg and j�(x̂)��(xk)j < �0=2, then we havew(xk) � �(xk) + �0 > �(x̂) + �02 = u�(x̂) + �02 � u(xk): 2
4.2 Representation formulaIn this subse
tion, for given Bellman and Isaa
s equations, we present theexpe
ted solutions, whi
h are 
alled \value fun
tions". In fa
t, via the dy-nami
 programming prin
iple for the value fun
tions, we verify that they arevis
osity solutions of the 
orresponding PDEs.Although this subse
tion is very important to learn how the notion ofvis
osity solutions is the right one from a view point of appli
ations in optimal
ontrol and games,if the reader is more interested in the PDE theory than these appli
ations,he/she may skip this subse
tion.We shall restri
t ourselves toinvestigate the formulas only for �rst-order PDEs45



be
ause in order to extend the results below to se
ond-order ones, we needto introdu
e some terminologies from sto
hasti
 analysis. However, this istoo mu
h for this thin book.As will be seen, we study the minimization of fun
tionals asso
iated withordinary di�erential equations (ODEs for short), whi
h is 
alled a \deter-ministi
" optimal 
ontrol problem. When we adapt \sto
hasti
" di�erentialequations instead of ODEs, those are 
alled \sto
hasti
" optimal 
ontrolproblems. We refer to [10℄ for the later.Moreover, to avoid mentioning the boundary 
ondition, we will work onthe whole domain Rn.Throughout this subse
tion, we also suppose (3.7); � > 0.4.2.1 Bellman equationWe �x a 
ontrol set A � Rm for some m 2 N. We de�ne A byA := f� : [0;1)! A j �(�) is measurableg:For x 2 Rn and � 2 A, we denote by X(�; x; �) the solution of( X 0(t) = g(X(t); �(t)) for t > 0;X(0) = x; (4:7)where we will impose a suÆ
ient 
ondition on 
ontinuous fun
tions g : Rn�A! Rn so that (4.7) is uniquely solvable.For given f : Rn�A! R, under suitable assumptions (see (4.8) below),we de�ne the 
ost fun
tional for X(�; x; �):J(x; �) := Z 10 e��tf(X(t; x; �); �(t))dt:Here, � > 0 is 
alled a dis
ount fa
tor, whi
h indi
ates that the right handside of the above is �nite.Now, we shall 
onsider the optimal 
ost fun
tional, whi
h is 
alled thevalue fun
tion in the optimal 
ontrol problem;u(x) := inf�2A J(x; �) for x 2 Rn:Theorem 4.4. (Dynami
 Programming Prin
iple) Assume that8><>: (1) supa2A �kf(�; a)kL1(Rn) + kg(�; a)kW 1;1(Rn)� <1;(2) supa2A jf(x; a)� f(y; a)j � !f(jx� yj) for x; y 2 Rn; (4:8)46



where !f 2 M.For any T > 0, we haveu(x) = inf�2A Z T0 e��tf(X(t; x; �); �(t))dt+ e��Tu(X(T ; x; �))! :Proof. For �xed T > 0, we denote by v(x) the right hand side of theabove.Step 1: u(x) � v(x). Fix any " > 0, and 
hoose �" 2 A su
h thatu(x) + " � Z 10 e��tf(X(t; x; �"); �"(t))dt:Setting x̂ = X(T ; x; �") and �̂" 2 A by �̂"(t) = �"(T + t) for t � 0, we haveZ 10 e��tf(X(t; x; �"); �"(t))dt = Z T0 e��tf(X(t; x; �"); �"(t))dt+e��T Z 10 e��tf(X(t; x̂; �̂"); �̂"(t))dt:Here and later, without mentioning, we use the fa
t thatX(t+ T ; x; �) = X(t; x̂; �̂) for T > 0; t � 0 and � 2 A;where �̂(t) := �(t+ T ) (t � 0) and x̂ := X(T ; x; �):Indeed, the above relation holds true be
ause of the uniqueness of solutionsof (4.7) under assumptions (4.8). See Fig 4.3.Thus, taking the in�mum in the se
ond term of the right hand side of theabove among A, we haveu(x) + " � Z T0 e��tf(X(t; x; �); �(t))dt+ e��Tu(x̂);whi
h implies one-sided inequality by taking the in�mum over A sin
e " > 0is arbitrary.Step 2: u(x) � v(x). Fix " > 0 again, and 
hoose �" 2 A su
h thatv(x) + " � Z T0 e��tf(X(t; x; �"); �"(t))dt + e��Tu(x̂);47



Fig 4.3
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ements X(t; x; �) X(t+ T ; x; �) = X(t; x̂; �̂)
t = 0 xx

t = T
x̂ = X(T ; x; �)

where x̂ := X(T ; x; �"). We next 
hoose �1 2 A su
h thatu(x̂) + " � Z 10 e��tf(X(t; x̂; �1); �1(t))dt:Now, setting �0(t) := ( �"(t) for t 2 [0; T );�1(t� T ) for t � T;we see that v(x) + 2" � Z 10 e��tf(X(t; x; �0); �0(t))dt;whi
h gives the opposite inequality by taking the in�mum over �0 2 A sin
e" > 0 is arbitrary again. 2Now, we give an existen
e result for Bellman equations.Theorem 4.5. Assume that (4:8) holds. Then, u is a vis
osity solutionof supa2Af�u� hg(x; a); Dui � f(x; a)g = 0 in Rn: (4:9)Sket
h of proof. In Steps 1 and 2, we give a proof when u 2 USC(Rn)and u 2 LSC(Rn), respe
tively.Step 1: Subsolution property. Fix � 2 C1(Rn), and suppose that 0 =(u� �)(x̂) � (u� �)(x) for some x̂ 2 Rn and any x 2 Rn.Fix any a0 2 A, and set �0(t) := a0 for t � 0 so that �0 2 A.48



For small s > 0, in view of Theorem 4.4, we have�(x̂)� e��s�(X(s; x̂; �0)) � u(x̂)� e��su(X(s; x̂; �0))� Z s0 e��tf(X(t; x̂; �0); a0)dt:Setting X(t) := X(t; x̂; �0) for simpli
ity, by (4.7), we see thate��tf��(X(t))� hg(X(t); �0); D�(X(t))ig = � ddt �e��t�(X(t))� : (4:10)Hen
e, we have0 � Z s0 e��tf��(X(t))� hg(X(t); a0); D�(X(t))i � f(X(t); a0)gdt:Therefore, dividing the above by s > 0, and then sending s! 0, we have0 � ��(x̂)� hg(x̂; a0); D�(x̂)i � f(x̂; a0);whi
h implies the desired inequality of the de�nition by taking the supremumover A.Step 2: Supersolution property. To show that u is a vis
osity supersolu-tion, we argue by 
ontradi
tion.Suppose that there are x̂ 2 Rn, � > 0 and � 2 C1(Rn) su
h that 0 =(u� �)(x̂) � (u� �)(x) for x 2 Rn, and thatsupa2Af��(x̂)� hg(x̂; a); D�(x̂)i � f(x̂; a)g � �2�:Thus, we 
an �nd " > 0 su
h thatsupa2Af��(x)� hg(x; a); D�(x)i � f(x; a)g � �� for x 2 B"(x̂): (4:11)By assumption (4.8) for g, setting t0 := "=(supa2A kg(�; a)kL1(Rn)+1) > 0,we easily see thatjX(t; x̂; �)� x̂j � Z t0 jX 0(s; x̂; �)jds � " for t 2 [0; t0℄ and � 2 A:Hen
e, by setting X(t) := X(t; x̂; �) for any �xed � 2 A, (4.11) yields��(X(t))� hg(X(t); �(t)); D�(X(t))i � f(X(t); �(t)) � �� (4:12)49



for t 2 [0; t0℄. Sin
e (4.10) holds for � in pla
e of �0, multiplying e��t in(4.12), and then integrating it over [0; t0℄, we obtain�(x̂)� e��t0�(X(t0))� Z t00 e��tf(X(t); �(t))dt � ��� (1� e��t0):Thus, setting �0 = �(1 � e��t0)=� > 0, whi
h is independent of � 2 A, wehave u(x̂) � Z t00 e��tf(X(t); �(t))dt+ e��t0u(X(t0))� �0:Therefore, taking the in�mum over A, we get a 
ontradi
tion to Theorem4.4. 2Corre
t proof, whi
h the reader may skip �rst.Step 1: Subsolution property. Assume that there are x̂ 2 Rn, � > 0 and � 2C1(Rn) su
h that 0 = (u� � �)(x̂) � (u� � �)(x) for x 2 Rn and thatsupa2Af��(x̂)� hg(x̂; a);D�(x̂)i � f(x̂; a)g � 2�:In view of (4.8), there are a0 2 A and r > 0 su
h that��(x)� hg(x; a0);D�(x)i � f(x; a0) � � for x 2 B2r(x̂): (4:13)For large k � 1, we 
an 
hoose xk 2 B1=k(x̂) su
h that u�(x̂) � u(xk) + k�1and j�(x̂)� �(xk)j < 1=k. We will only use k su
h that 1=k � r.Setting �0(t) := a0, we note that Xk(t) := X(t;xk; �0) 2 B2r(x̂) for t 2 [0; t0℄with some t0 > 0 and for large k.On the other hand, by Theorem 4.4, we haveu(xk) � Z t00 e��tf(Xk(t); a0)dt+ e��t0u(Xk(t0)):Thus, we have�(xk)� 2k � �(x̂)� 1k � u(xk) � Z t00 e��tf(Xk(t); a0)dt+ e��t0�(Xk(t0)):Hen
e, by (4.13) as in Step 1 of Sket
h of proof, we see that�2k � Z t00 e��tff(Xk(t); a0) + hg(Xk(t); a0);D�(Xk(t))i � ��(Xk(t))gdt� � �� (1� e��t0); 50



whi
h is a 
ontradi
tion for large k.Step 2: Supersolution property. Assume that there are x̂ 2 Rn, � > 0 and� 2 C1(Rn) su
h that 0 = (u� � �)(x̂) � (u� � �)(x) for x 2 Rn and thatsupa2Af��(x̂)� hg(x̂; a);D�(x̂)i � f(x̂; a)g � �2�:In view of (4.8), there is r > 0 su
h that��(x)� hg(x; a);D�(x)i � f(x; a) � �� for x 2 B2r(x̂) and a 2 A: (4:14)For large k � 1, we 
an 
hoose xk 2 B1=k(x̂) su
h that u�(x̂) � u(xk) � k�1and j�(x̂)� �(xk)j < 1=k. In view of (4.8), there is t0 > 0 su
h thatXk(t;xk; �) 2 B2r(x̂) for all k � 1r ; � 2 A and t 2 [0; t0℄:Now, we sele
t �k 2 A su
h thatu(xk) + 1k � Z t00 e��tf(X(t;xk; �k); �k(t))dt+ e��t0u(X(t0;xk; �k)):Setting Xk(t) := X(t;xk; �k), we have�(xk) + 3k � �(x̂) + 2k � u(xk) + 1k � Z t00 e��tf(Xk(t); �k(t))dt + e��t0�(Xk(t)):Hen
e, we have3k � Z t00 e��tfhg(Xk(t); �k(t));D�(Xk(t))i+ f(Xk(t); �k(t)) � ��(Xk(t))gdt:Putting (4.14) with �k in the above, we have3k � � Z t00 e��tdt;whi
h is a 
ontradi
tion for large k � 1. 24.2.2 Isaa
s equationIn this subse
tion, we study fully nonlinear PDEs (i:e: p 2 Rn ! F (x; p) isneither 
onvex nor 
on
ave) arising in di�erential games.
51



We are given 
ontinuous fun
tions f : Rn � A � B ! R and g : Rn �A� B ! Rn su
h that8>><>>: (1) sup(a;b)2A�B nkf(�; a; b)kL1(Rn) + kg(�; a; b)kW 1;1(Rn)o <1;(2) sup(a;b)2A�B jf(x; a; b)� f(y; a; b)j � !f(jx� yj) for x; y 2 Rn; (4:15)where !f 2 M.Under (4.15), we shall 
onsider Isaa
s equations:supa2A infb2Bf�u� hg(x; a; b); Dui � f(x; a; b)g = 0 in Rn; (4:16)and infb2B supa2Af�u� hg(x; a; b); Dui � f(x; a; b)g = 0 in Rn: (4:160)As in the previous subse
tion, we shall derive the expe
ted solution.We �rst introdu
e some notations: While we will use the same notion Aas before, we setB := f� : [0;1)! B j �(�) is measurableg:Next, we introdu
e the so-
alled sets of \non-anti
ipating strategies":� := 8><>: 
 : A! B ������� for any T > 0; if �1 and �2 2 A satisfythat �1(t) = �2(t) for a:a: t 2 (0; T );then 
[�1℄(t) = 
[�2℄(t) for a:a: t 2 (0; T ) 9>=>;and � := 8><>: Æ : B ! A ������� for any T > 0; if �1 and �2 2 B satisfythat �1(t) = �2(t) for a:a: t 2 (0; T );then Æ[�1℄(t) = Æ[�2℄(t) for a:a: t 2 (0; T ) 9>=>; :Using these notations, we will 
onsider maximizing-minimizing problemsof the following 
ost fun
tional: For � 2 A, � 2 B, and x 2 Rn,J(x; �; �) := Z 10 e��tf(X(t; x; �; �); �(t); �(t))dt;52



where X(�; x; �; �) is the (unique) solutions of( X 0(t) = g(X(t); �(t); �(t)) for t > 0;X(0) = x: (4:17)The expe
ted solutions for (4.16) and (4:160), respe
tively, are given byu(x) = sup
2� inf�2A Z 10 e��tf(X(t; x; �; 
[�℄); �(t); 
[�℄(t))dt;and v(x) = infÆ2� sup�2B Z 10 e��tf(X(t; x; Æ[�℄; �); Æ[�℄(t); �(t))dt:We 
all u and v upper and lower value fun
tions of this di�erential game,respe
tively. In fa
t, under appropriate hypotheses, we expe
t that v � u,whi
h 
annot be proved easily. To show v � u, we �rst observe that u and vare, respe
tively, vis
osity solutions of (4.16) and (4:160). Noting thatsupa2A infb2Bf�r�hg(x; a; b); pi�f(x; a; b)g � infb2B supa2Af�r�hg(x; a; b); pi�f(x; a; b)gfor (x; r; p) 2 Rn�R�Rn, we see that u (resp., v) is a vis
osity supersolution(resp., subsolution) of (4:160) (resp., (4.16)). Thus, the standard 
omparisonprin
iple implies v � u in Rn (under suitable growth 
ondition at jxj ! 1for u and v).We shall only deal with u sin
e the 
orresponding results for v 
an beobtained in a symmetri
 way.To show that u is a vis
osity solution of the Isaa
s equation (4.16), we �rstestablish the dynami
 programming prin
iple as in the previous subse
tion:Theorem 4.6. (Dynami
 Programming Prin
iple) Assume that (4:15)hold. Then, for T > 0, we haveu(x) = sup
2� inf�2A0� Z T0 e��tf(X(t; x; �; 
[�℄); �(t); 
[�℄(t))dt+e��Tu(X(T ; x; �; 
[�℄)) 1A :Proof. For a �xed T > 0, we denote by w(x) the right hand side of theabove.Step 1: u(x) � w(x). For any " > 0, we 
hoose 
" 2 � su
h thatu(x)� " � inf�2A Z 10 e��tf(X(t; x; �; 
"[�℄); �(t); 
"[�℄(t))dt =: I":53



For any �xed �0 2 A, we de�ne the mapping T0 : A! A byT0[�℄ := ( �0(t) for t 2 [0; T );�(t� T ) for t 2 [T;1) for � 2 A:Thus, for any � 2 A, we haveI" � Z T0 e��tf(X(t; x; �0; 
"[�0℄); �0(t); 
"[�0℄(t))dt+ Z 1T e��tf(X(t; x; T0[�℄; 
"[T0[�℄℄); T0[�℄(t); 
"[T0[�℄℄(t))dt=: I1" + I2" :We next de�ne 
̂ 2 � by
̂[�℄(t) := 
"[T0[�℄℄(t+ T ) for t � 0 and � 2 A:Note that 
̂ belongs to �.Setting x̂ := X(T ; x; �0; 
"[�0℄), we haveI2" = e��T Z 10 e��tf(X(t; x̂; �; 
̂[�℄); �(t); 
̂[�℄(t))dt:Taking the in�mum over � 2 A, we haveu(x)� " � I1" + e��T inf�2A Z 10 e��tf(X(t; x̂; �; 
̂[�℄); �(t); 
̂[�℄(t))dt=: I1" + Î2" :Sin
e Î2" � e��Tu(x̂), we haveu(x)� " � I1" + e��Tu(x̂);whi
h implies u(x)� " � w(x) by taking the in�mum over �0 2 A and then,the supremum over �. Therefore, we get the one-sided inequality sin
e " > 0is arbitrary.Step 2: u(x) � w(x). For " > 0, we 
hoose 
1" 2 � su
h thatw(x)� " � inf�2A0� Z T0 e��tf(X(t; x; �; 
1" [�℄); �(t); 
1" [�℄(t))dt+e��Tu(X(T ; x; �; 
1" [�℄)) 1A :54



For any �xed �0 2 A, setting x̂ = X(T ; x; �0; 
1" [�0℄), we havew(x)� " � Z T0 e��tf(X(t; x; �0; 
1" [�0℄); �0(t); 
1" [�0℄(t))dt+ e��Tu(x̂):Next, we 
hoose 
2" 2 � su
h thatu(x̂)� " � inf�2A Z 10 e��tf(X(t; x̂; �; 
2" [�℄); �(t); 
2" [�℄(t))dt: =: I:For � 2 A, we de�ne the mapping T1 : A! A byT1[�℄(t) := �(t+ T ) for t � 0:Thus, we haveI � Z 10 e��tf(X(t; x̂; T1[�0℄; 
2" [T1[�0℄℄); T1[�0℄(t); 
2" [T1[�0℄℄(t))dt =: Î :Now, for � 2 A, setting
̂[�℄(t) := ( 
1" [�℄(t) for t 2 [0; T );
2" [T1[�℄℄(t� T ) for t 2 [T;1);and X̂(t) := X(t; x̂; T1[�0℄; 
2" [T1[�0℄℄), we haveÎ = Z 1T e��(t�T )f(X̂(t� T ); T1[�0℄(t� T ); 
2" [T1[�0℄℄(t� T ))dt= e�T Z 1T e��tf(X̂(t� T ); �0(t); 
̂[�0℄(t))dt:Sin
e X(t; x; �0; 
̂[�0℄) = ( X(t; x; �0; 
1" [�0℄) for t 2 [0; T );X̂(t� T ) for t 2 [T;1);we have w(x)� 2" � Z 10 e��tf(X(t; x; �0; 
̂[�0℄); �0(t); 
̂[�0℄(t))dt:Sin
e �0 is arbitrary, we havew(x)� 2" � inf�2A Z 10 e��tf(X(t; x; �; 
̂[�℄); �(t); 
̂[�℄(t))dt;55



whi
h yields the assertion by taking the supremum over � and then, bysending "! 0. 2Now, we shall verify that the value fun
tion u is a vis
osity solution of(4.16).Sin
e we only give a sket
h of proofs, one 
an skip the following theorem.For a 
orre
t proof, we refer to [1℄, originally by Evans-Souganidis (1984).Theorem 4.7. Assume that (4:15) holds.(1) Then, u is a vis
osity subsolution of (4:16).(2) Assume also the following properties:8>>><>>>: (i) A � Rm is 
ompa
t for some integer m � 1:(ii) there is an !A 2M su
h thatjf(x; a; b)� f(x; a0; b)j + jg(x; a; b) � g(x; a0; b)j � !A(ja� a0j)for x 2 Rn; a; a0 2 A and b 2 B: (4:18)Then, u is a vis
osity supersolution of (4:16).Remark. To show that v is a vis
osity subsolution of (4:160), instead of (4.18),we need to suppose the following hypotheses:8>>><>>>: (i) B � Rm is 
ompa
t for some integer m � 1:(ii) there is an !B 2M su
h thatjf(x; a; b) � f(x; a; b0)j+ jg(x; a; b) � g(x; a; b0)j � !B(jb� b0j)for x 2 Rn; b; b0 2 B and a 2 A; (4:180)while to verify that v is a vis
osity supersolution of (4:160), we only need (4.15).Sket
h of proof.We shall only prove the assertion assuming that u 2 USC(Rn)and u 2 LSC(Rn) in Step 1 and 2, respe
tively.To give a 
orre
t proof without the semi-
ontinuity assumption, we need a bit
areful analysis similar to the proof for Bellman equations. We omit the 
orre
tproof here.Step 1: Subsolution property. Suppose that the subsolution property fails; thereare x 2 Rn, � > 0 and � 2 C1(Rn) su
h that 0 = (u� �)(x) � (u� �)(y) (for ally 2 Rn) and supa2A infb2Bf�u(x)� hg(x; a; b);D�(x)i � f(x; a; b)g � 3�:We note that X(�;x; �; 
[�℄) are uniformly 
ontinuous for any (�; 
) 2 A � �in view of (4.15). 56



Thus, we 
an 
hoose that a0 2 A su
h thatinfb2Bf��(x) � hg(x; a0; b);D�(x)i � f(x; a0; b)g � 2�:For any 
 2 �, setting �0(t) = a0 for t � 0, we simply write X(�) forX(�;x; �0; 
[�0℄). Thus, we �nd small t0 > 0 su
h that��(X(t))� hg(X(t); a0; 
[�0℄(t));D�(X(t))i � f(X(t); a0; 
[�0℄(t)) � �for t 2 [0; t0℄. Multiplying e��t in the above and then, integrating it over [0; t0℄,we have�� (1� e��t0) � � Z t00 � ddt �e��t�(X(t))� + e��tf(X(t); a0; 
[�0℄(t))� dt= �(x)� e��t0�(X(t0))� Z t00 e��tf(X(t); a0; 
[�0℄(t))dt:Hen
e, we haveu(x)� �� (1� e��t0) � Z t00 e��tf(X(t); a0; 
[�0℄(t))dt+ e��t0u(X(t0)) =: Î :Taking the in�mum over A, we haveÎ � inf�2A0� Z t00 e��tf(X(t;x; �; 
[�℄); �(t); 
[�℄(t))dt+e��t0u(X(t0;x; �; 
[�℄)) 1A :Therefore, sin
e 
 2 � is arbitrary, we haveu(x)� �� (1� e��t0) � sup
2� inf�2A0� Z t00 e��tf(X(t;x; �; 
[�℄); �(t); 
[�℄(t))dt+e��t0u(X(t0;x; �; 
[�℄)) 1A ;whi
h 
ontradi
ts Theorem 4.6.Step 2: Supersolution property. Suppose that the supersolution property fails;there are x 2 Rn, � > 0 and � 2 C1(Rn) su
h that 0 = (u � �)(x) � (u � �)(y)for y 2 Rn, andsupa2A infb2Bf�u(x)� hg(x; a; b);D�(x)i � f(x; a; b)g � �3�:For any a 2 A, there is b(a) 2 B su
h that�u(x)� hg(x; a; b(a));D�(x)i � f(x; a; b(a)) � �2�:57



In view of (4.18), there is "(a) > 0 su
h that if ja� a0j < "(a) and jx� yj < "(a),then we have ��(y)� hg(y; a0; b(a));D�(y)i � f(y; a0; b(a)) � ��:From the 
ompa
tness of A, we may sele
t fakgMk=1 su
h thatA = M[k=1Ak;where Ak := fa 2 A j ja� akj < "(ak)g:Furthermore, we set Â1 = A1, and indu
tively, Âk := Ak n [k�1j=1Aj ; Âk \ Âj = ;for k 6= j. We may also suppose that Âk 6= ; for k = 1; : : : ;M .For � 2 A, we de�ne
0[�℄(t) := b(ak) provided �(t) 2 Âk:Now, setting X(t) := X(t;x; �; 
0[�℄), we �nd t0 > 0 su
h that��(X(t)) � hg(X(t); �(t); 
0 [�℄(t));D�(X(t))i � f(X(t); �(t); 
0[�℄(t)) � ��for t 2 [0; t0℄. Multiplying e��t in the above and then, integrating it, we obtain�(x)� e��t0�(X(t0))� Z t00 e��tf(X(t); �(t); 
0[�℄(t))dt � � �� (1� e��t0):Sin
e � 2 A is arbitrary, we haveu(x) + �� (1� e��t0) � inf�2A0� Z t00 e��tf(X(t; x; �; 
0[�℄); �(t); 
0[�℄(t))dt+e��t0u(X(t0; x; �; 
0[�℄)) 1A ;whi
h 
ontradi
ts Theorem 4.6 by taking the supremum over �. 24.3 StabilityIn this subse
tion, we present a stability result for vis
osity solutions, whi
his one of the most important properties for \solutions" as noted in se
tion 1.Thus, this result justi�es our notion of vis
osity solutions.However, sin
e we will only use Proposition 4.8 below in se
tion 7.3, thereader may skip the proof. 58



First of all, for possibly dis
ontinuous F : 
�R�Rn�Sn ! R, we are
on
erned with F (x; u;Du;D2u) = 0 in 
: (4:19)We introdu
e the following notation:F�(x; r; p;X) := lim"!0 inf ( F (y; s; q; Y ) ����� y 2 
 \ B"(x); js� rj < ";jq � pj < "; kY �Xk < " ) ;F �(x; r; p;X) := lim"!0 sup( F (y; s; q; Y ) ����� y 2 
 \ B"(x); js� rj < ";jq � pj < "; kY �Xk < " ) :De�nition. We 
all u : 
 ! R a vis
osity subsolution (resp., super-solution) of (4.19) if u� (resp., u�) is a vis
osity subsolution (resp., super-soluion) ofF�(x; u;Du;D2u) � 0 �resp., F �(x; u;Du;D2u) � 0� in 
:We 
all u : 
 ! R a vis
osity solution of (4.19) if it is both a vis
ositysub- and supersolution of (4.19).Now, for given 
ontinuous fun
tions Fk : 
�R�Rn � Sn ! R, we setF (x; r; p;X):= limk!1 inf 8><>: Fj(y; s; q; Y ) ������� jy � xj < 1=k; js� rj < 1=k;jq � pj < 1=k; kY �Xk < 1=kand j � k 9>=>; ;F (x; r; p;X):= limk!1 sup8><>: Fj(y; s; q; Y ) ������� jy � xj < 1=k; js� rj < 1=k;jq � pj < 1=k; kY �Xk < 1=kand j � k 9>=>; :Our stability result is as follows.Proposition 4.8. Let Fk : 
 � R � Rn � Sn ! R be 
ontinuousfun
tions. Let uk : 
 ! R be a vis
osity subsolution (resp., supersolution)of Fk(x; uk; Duk; D2uk) = 0 in 
:59



Setting u (resp., u) byu(x) := limk!1 supf(uj)�(y) j y 2 B1=k(x) \ 
; j � kg�resp., u(x) := limk!1 inff(uj)�(y) j y 2 B1=k(x) \ 
; j � kg�for x 2 
, then u (resp., u) is a vis
osity subsolution (resp., supersolution)of F (x; u;Du;D2u) � 0 (resp., F (x; u;Du;D2u) � 0) in 
:Remark. We note that u 2 USC(
), u 2 LSC(
), F 2 LSC(
 �R �Rn � Sn) and F 2 USC(
�R�Rn � Sn).Proof. We only give a proof for subsolutions sin
e the other 
an be shownsimilarly.Given � 2 C2(
), we let x0 2 
 be su
h that 0 = (u��)(x0) > (u��)(x)for x 2 
 n fx0g. We shall show that F (x0; u(x0); D�(x0); D2�(x0)) � 0.We may 
hoose xk 2 Br(x0) (for a subsequen
e if ne
essary), where r 2(0;dist(x0; �
)), su
h thatlimk!1xk = x0 and limk!1(uk)�(xk) = u(x0): (4:20)We sele
t yk 2 Br(x0) su
h that ((uk)� � �)(yk) = supBr(x0)((uk)� � �).We may also suppose that limk!1 yk = z for some z 2 Br(x0) (takinga subsequen
e if ne
essary). Sin
e ((uk)� � �)(yk) � ((uk)� � �)(xk), (4.20)implies0 = lim infk!1 ((uk)� � �)(xk) � lim infk!1 ((uk)� � �)(yk)� lim infk!1 (uk)�(yk)� �(z)� lim supk!1 (uk)�(yk)� �(z) � (u� �)(z):Thus, this yields z = x0 and limk!1(uk)�(yk) = u(x0). Hen
e, we see thatyk 2 Br(x0) for large k � 1. Sin
e (uk)� � � attains a maximum over Br(x0)at yk 2 Br(x0), by the de�nition of uk (with Proposition 2.4 for 
0 = Br(x0)),we have Fk(yk; (uk)�(yk); D�(yk); D2�(yk)) � 0;whi
h 
on
ludes the proof by taking the limit in�mum with the de�nition ofF . 2 60



5 Generalized boundary value problemsIn order to obtain the uniqueness of solutions of an ODE, we have to suppose
ertain initial or boundary 
ondition. In the study of PDEs, we need toimpose appropriate 
onditions on �
 for the uniqueness of solutions.Following the standard PDE theory, we shall treat a few typi
al boundary
onditions in this se
tion.Sin
e we are mainly interested in degenerate ellipti
 PDEs, we 
annotexpe
t \solutions" to satisfy the given boundary 
ondition on the wholeof �
. The simplest example is as follows: For 
 := (0; 1), 
onsider the\degenerate" ellipti
 PDE�dudx + u = 0 in (0; 1):Note that it is impossible to �nd a solution u of the above su
h that u(0) =u(1) = 1.Our plan is to propose a de�nition of \generalized" solutions for boundaryvalue problems. For this purpose, we extend the notion of vis
osity solutionsto possibly dis
ontinuous PDEs on 
 while we normally 
onsider those in 
.For general G : 
�R�Rn � Sn ! R, we are 
on
erned withG(x; u;Du;D2u) = 0 in 
: (5:1)As in se
tion 4.3, we de�neG�(x; r; p;X) := lim"!0 inf ( G(y; s; q; Y ) ����� y 2 
 \ B"(x); js� rj < ";jq � pj < "; kY �Xk < " ) ;G�(x; r; p;X) := lim"!0 sup( G(y; s; q; Y ) ����� y 2 
 \B"(x); js� rj < ";jq � pj < "; kY �Xk < " ) :De�nition. We 
all u : 
! R a vis
osity subsolution (resp., superso-lution) of (5.1) if, for any � 2 C2(
),G�(x; u�(x); D�(x); D2�(x)) � 0�resp., G�(x; u�(x); D�(x); D2�(x)) � 0�provided that u� � � (resp., u� � �) attains its maximum (resp., minimum)at x 2 
. 61



We 
all u : 
 ! R a vis
osity solution of (5.1) if it is both a vis
ositysub- and supersolution of (5.1).Our 
omparison prin
iple in this setting is as follows:\Comparison prin
iple in this setting"vis
osity subsolution u of (5.1)vis
osity supersolution v of (5.1) ) =) u � v in 
Note that the boundary 
ondition is 
ontained in the de�nition.Using the above new de�nition, we shall formulate the boundary valueproblems in the vis
osity sense. Given F : 
 � R � Rn � Sn ! R andB : �
�R�Rn�Sn ! R, we investigate general boundary value problems( F (x; u;Du;D2u) = 0 in 
;B(x; u;Du;D2u) = 0 on �
: (5:2)Setting G byG(x; r; p;X) := ( F (x; r; p;X) for x 2 
;B(x; r; p;X) for x 2 �
;we give the de�nition of boundary value problems (5.2) in the vis
osity sense.De�nition. We 
all u : 
! R a vis
osity subsolution (resp., superso-lution) of (5.2) if it is a vis
osity subsolution (resp., supersolution) of (5.1),where G is de�ned in the above.We 
all u : 
 ! R a vis
osity solution of (5.2) if it is both a vis
ositysub- and supersolution of (5.2).Remark. When F and B are 
ontinuous and G is given as above, G� andG� 
an be expressed in the following manner:G�(x; r; p;X) = ( F (x; r; p;X) for x 2 
;minfF (x; r; p;X); B(x; r; p;X)g for x 2 �
;G�(x; r; p;X) = ( F (x; r; p;X) for x 2 
;maxfF (x; r; p;X); B(x; r; p;X)g for x 2 �
:62



It is not hard to extend the existen
e and stability results 
orrespondingto Theorem 4.3 and Proposition 4.8, respe
tively, to vis
osity solutions inthe above sense. However, it is not straightforward to show the 
omparisonprin
iple in this new setting. Thus, we shall 
on
entrate our attention tothe 
omparison prin
iple, whi
h implies the uniqueness (and 
ontinuity) ofvis
osity solutions.The main diÆ
ulty to prove the 
omparison prin
iple is that we have to\avoid" the boundary 
onditions for both of vis
osity sub- and supersolu-tions.To explain this, let us 
onsider the 
ase when G is given by (5.2). Let uand v be, respe
tively, a vis
osity sub- and supersolution of (5.1). We shallobserve that the standard argument in Theorem 3.7 does not work.For " > 0, suppose that (x; y)! u(x)� v(y)� (2")�1jx� yj2 attains itsmaximum at (x"; y") 2 
�
. Noti
e that there is NO reason to verify that(x"; y") 2 
� 
.The worst 
ase is that (x"; y") 2 �
� �
. In fa
t, in view of Lemma 3.6,we �nd X; Y 2 Sn su
h that ((x"� y")=";X) 2 J2;+
 u(x"), ((x"� y")="; Y ) 2J2;�
 v(y"), the matrix inequalities in Lemma 3.6 hold for X; Y . Hen
e, wehave min�F �x"; u(x"); x" � y"" ;X� ; B �x"; u(x"); x" � y"" ;X�� � 0and max�F �y"; v(y"); x" � y"" ; Y � ; B �y"; v(y"); x" � y"" ; Y �� � 0:However, even if we suppose that (3:21) holds for F and B \in 
", we 
annotget any 
ontradi
tion whenF �x"; u(x"); x" � y"" ;X� � 0 � B �y"; v(y"); x" � y"" ; Y �or B �x"; u(x"); x" � y"" ;X� � 0 � F �y"; v(y"); x" � y"" ; Y � :It seems impossible to avoid this diÆ
ulty as long as we use jx� yj2=(2") as\test fun
tions". 63



Our plan to go beyond this diÆ
ulty is to �nd new test fun
tions �"(x; y)(instead of jx� yj2=(2")) so that the fun
tion (x; y)! u(x)� v(y)��"(x; y)attains its maximum over 
 � 
 at an interior point (x"; y") 2 
 � 
. Tothis end, sin
e we will use several \perturbation" te
hniques, we suppose twohypotheses on F : First, we shall suppose the following 
ontinuity of F withrespe
t to (p;X)-variables.8><>: There is an !0 2 M su
h thatjF (x; p;X)� F (x; q; Y )j � !0(jp� qj+ kX � Y k)for x 2 
; p; q 2 Rn; X; Y 2 Sn: (5:3)The next assumption is a bit stronger than the stru
ture 
ondition (3.21):8>>>>>>>><>>>>>>>>:
There is !̂F 2 M su
h thatif X; Y 2 Sn and � > 1 satisfy�3� I 00 I ! �  X 00 �Y ! � 3� I �I�I I ! ; thenF (y; p; Y )� F (x; p;X) � !̂F (jx� yj(1 + jpj+ �jx� yj))for x; y 2 
; p 2 Rn; X; Y 2 Sn: (5:4)

5.1 Diri
hlet problemFirst, we 
onsider Diri
hlet boundary value problems (Diri
hlet problems forshort) in the above sense.Assuming that vis
osity sub- and supersolutions are 
ontinuous on �
,we will obtain the 
omparison prin
iple for them.We now re
all the 
lassi
al Diri
hlet problem( �u+ F (x;Du;D2u) = 0 in 
;u� g = 0 on �
: (5:5)Note that the Diri
hlet problem of (5.5) in the vis
osity sense is as follows:subsolution() ( �u+ F (x;Du;D2u) � 0 in 
;minf�u+ F (x;Du;D2u); u� gg � 0 on �
;andsupersolution() ( �u+ F (x;Du;D2u) � 0 in 
;maxf�u+ F (x;Du;D2u); u� gg � 0 on �
:64



We shall suppose the following property on the shape of 
, whi
h maybe 
alled an \interior 
one 
ondition" (see Fig 5.1):( For ea
h z 2 �
; there are r̂; ŝ 2 (0; 1) su
h thatx� rn(z) + r� 2 
 for x 2 
 \ Br̂(z); r 2 (0; r̂) and � 2 Bŝ(0): (5:6)Here and later, we denote by n(z) the unit outward normal ve
tor at z 2 �
.

Fig 5.1
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Theorem 5.1. Assume that � > 0, (5:3), (5:4) and (5:6) hold. Forg 2 C(�
), we let u and v : 
 ! R be, respe
tively, a vis
osity sub- andsupersolution of (5:5) su
h thatlim infx2
!z u�(x) � u�(z) and lim supx2
!z v�(x) � v�(z) for z 2 �
: (5:7)Then, u� � v� in 
.Remark. Noti
e that (5.7) implies the 
ontinuity of u� and v� on �
.Proof. Suppose that max
(u� � v�) =: � > 0. We simply write u and vfor u� and v�, respe
tively.Case 1: max�
(u� v) = �. We 
hoose z 2 �
 su
h that (u� v)(z) = �.We shall divide three 
ases:Case 1-1: u(z) > g(z). For "; Æ 2 (0; 1), where Æ > 0 will be �xed later,setting �(x; y) := (2"2)�1jx� y� "Æn(z)j2� Æjx� zj2, we let (x"; y") 2 
�
be the maximum point of �(x; y) := u(x)� v(y)� �(x; y) over 
� 
.65



Sin
e z�"Æn(z) 2 
 for small " > 0 by (5.6), �(x"; y") � �(z; z�"Æn(z))implies thatjx" � y" � "Æn(z)j22"2 � u(x")�v(y")�u(z)+v(z�"Æn(z))�Æjx"�zj2: (5:8)Sin
e jx"�y"j �M", where M := p2(max
 u�min
 v�u(z)+v(z)+1)1=2,for small " > 0, we may suppose that (x"; y") ! (x̂; x̂) and (x" � y")="! ẑfor some x̂ 2 
 and ẑ 2 Rn as " ! 0 along a subsequen
e (denoted by "again). Thus, from the 
ontinuity (5.7) of v at z 2 �
, (5.8) implies that� � u(x̂)� v(x̂)� Æjx̂� zj2;whi
h yields x̂ = z. Moreover, we havelim"!0 jx" � y" � "Æn(z)j2"2 = 0;whi
h implies that lim"!0 jx" � y"j" = Æ: (5:9)Furthermore, we note that y" = x" � "Æn(z) + o(") 2 
 be
ause of (5.6).Applying Lemma 3.6 with Proposition 2.7 to u(x)+ "�1Æhn(z); xi� Æjx�zj2 � 2�1Æ2 and v(y) + "�1Æhn(z); yi, we �nd X; Y 2 Sn su
h that x" � y""2 � Æ"n(z) + 2Æ(x" � z); X + 2ÆI! 2 J2;+
 u(x"); (5:10) x" � y""2 � Æ"n(z); Y ! 2 J2;�
 v(y"); (5:11)and � 3"2  I OO I ! �  X OO �Y ! � 3"2  I �I�I I ! :Putting p" := "�2(x" � y")� Æ"�1n(z), by (5.3), we haveF (x"; p"; X)� F (x"; p" + 2Æ(x"� z); X + 2ÆI) � !0(2Æjx"� zj+ 2Æ): (5:12)Sin
e y" 2 
 and u(x") > g(x") for small " > 0 provided x" 2 �
, in viewof (5.10) and (5.11), we have�(u(x")� v(y")) � F (y"; p"; Y )� F (x"; p" + 2Æ(x" � z); X + 2ÆI):66



Combining this with (5.12) , by (5.4), we have�(u(x")�v(y")) � !0(2Æjx"�zj+2Æ)+!̂F  jx" � y"j 1 + jp"j+ jx" � y"j"2 !! :Sending "! 0 together with (5.9) in the above, we have�� � !0(2Æ) + !̂F (2Æ2);whi
h is a 
ontradi
tion for small Æ > 0, whi
h only depends on � and �.Case 1-2: v(z) < g(z). To get a 
ontradi
tion, we argue as above repla
ing�(x; y) by  (x; y) := (2"2)�1jx � y + "Æn(z)j2 � Æjx � zj2 so that x" = y" �"Æn(z) + o(") 2 
 for small " > 0. Note that we need here the 
ontinuity ofu on �
 in (5.7) while the other one in (5.7) is needed in Case 1-1. (See alsothe proof of Theorem 5.3 below.)Case 1-3: u(z) � g(z) and v(z) � g(z). This does not o

ur be
ause 0 <� = (u� v)(z) � 0.Case 2: sup�
(u� v) < �. In this 
ase, using the standard test fun
tionjx� yj2=(2") (without Æjx � zj2 term), we 
an follow the same argument asin the proof of Theorem 3.7. 2Remark. Unfortunately, without assuming the 
ontinuity of vis
osity so-lutions on �
, the 
omparison prin
iple fails in general.In fa
t, setting F (x; r; p;X) � r and g(x) � �1, 
onsider the fun
tionu(x) := ( 0 for x 2 
;�1 for x 2 �
:Note that u� � 0 and u� � u in 
, whi
h are respe
tively a vis
osity sub- andsupersolution of G(x; u;Du;D2u) = 0 in 
. Therefore, this example showsthat the 
omparison prin
iple fails in general without assumption (5.7).5.2 State 
onstraint problemThe state 
onstraint boundary 
ondition arises in a typi
al optimal 
ontrolproblem. Thus, if the reader is more interested in the PDE theory, he/shemay skip Proposition 5.2 below, whi
h explains why we will adapt the \state
onstraint boundary 
ondition" in Theorem 5.3.67



To explain our motivation, we shall 
onsider Bellman equations of �rst-order.supa2Af�u� hg(x; a);Dui � f(x; a)g = 0 in 
:Here, we use the notations in se
tion 4.2.1.We introdu
e the following set of 
ontrols: For x 2 
,A(x) := f�(�) 2 A j X(t;x; �) 2 
 for t � 0g:We shall suppose that A(x) 6= ; for all x 2 
: (5:13)Also, we suppose that8><>: (1) supa2A �kf(�; a)kL1(
) + kg(�; a)kW 1;1(
)� <1;(2) supa2A jf(x; a)� f(y; a)j � !f (jx� yj) for x; y 2 
; (5:14)where !f 2M.We are now interested in the following the optimal 
ost fun
tional:u(x) := inf�2A(x) Z 10 e��tf(X(t;x; �); �(t))dt:Proposition 5.2. Assume that � > 0, (5:13) and (5:14) hold. Then, we have(1) u is a vis
osity subsolution ofsupa2Af�u� hg(x; a);Dui � f(x; a)g � 0 in 
;(2) u is a vis
osity supersolution ofsupa2Af�u� hg(x; a);Dui � f(x; a)g � 0 in 
:Remark. We often say that u satis�es the state 
onstraint boundary 
onditionwhen it is a vis
osity supersolution of\F (x; u;Du;D2u) � 0 in �
".Proof. In fa
t, at x 2 
, it is easy to verify that the dynami
 programmingprin
iple (Theorem 4.4) holds for small T > 0. Thus, we may show Theorem 4.5repla
ing Rn by 
. 68



Hen
e, it only remains to show (2) on �
. Thus, suppose that there are x̂ 2 �
,� > 0 and � 2 C1(
) su
h that (u� � �)(x̂) = 0 � (u� � �)(x) for x 2 
, andsupa2Af��(x̂)� hg(x̂; a);D�(x̂)i � f(x̂; a)g � �2�:Then, we will get a 
ontradi
tion.Choose xk 2 
 \B1=k(x̂) su
h that u�(x̂) + k�1 � u(xk) and j�(x̂)� �(xk)j <1=k. In view of (5.14), there is t0 > 0 su
h that for any � 2 A(xk) and large k � 1,we have��(Xk(t))� hg(Xk(t); �(t));D�(Xk(t))i � f(Xk(t); �(t)) � �� for t 2 (0; t0);where Xk(t) := X(t;xk; �). Thus, multiplying e��t and then, integrating it over(0; t0), we have�(xk) � e��t0�(Xk(t0)) + Z t00 e��tf(Xk(t); �(t))dt � �� (1� e��t0):Sin
e we haveu(xk) � 2k + e��t0u(Xk(t0)) + Z t00 e��tf(Xk(t); �(t))dt � �� (1� e��t0);taking the in�mum over A(xk), we apply Theorem 4.4 to get0 � 2k � �� (1� e��t0);whi
h is a 
ontradi
tion for large k. 2Motivated by this proposition, we shall 
onsider more general se
ond-orderellipti
 PDEs.Theorem 5.3. Assume that � > 0, (5:3), (5:4), (5:6) and (5:12) hold. Letu : 
! R be, respe
tively, a vis
osity sub- and supersolution of�u+ F (x;Du;D2u) � 0 in 
;and �v + F (x;Dv;D2v) � 0 in 
:Assume also that lim infx2
!z u�(x) � u�(z) for z 2 �
: (5:15)69



Then, u� � v� in 
.Remark. In 1986, Soner �rst treated the state 
onstraint problems for deter-ministi
 optimal 
ontrol (i:e: �rst-order PDEs) by the vis
osity solution approa
h.We note that we do not need 
ontinuity of v on �
 while we need it forDiri
hlet problems. For further dis
ussion on the state 
onstraint problems, werefer to Ishii-Koike (1996).We also note that the proof below is easier than that for Diri
hlet problemsin se
tion 5.1 be
ause we only need to avoid the boundary 
ondition for vis
ositysubsolutions.Proof. Suppose that max
(u� � v�) =: � > 0. We shall write u and v for u�and v�, respe
tively, again.We may suppose that max�
(u � v) = � sin
e otherwise, we 
an use thestandard pro
edure to get a 
ontradi
tion.Now, we pro
eed the same argument in Case 1-2 in the proof of Theorem 5.1(although it is not pre
isely written).For "; Æ > 0, setting �(x; y) := (2"2)�1jx� y+ "Æn(z)j2 + Æjx� zj2, where n isthe unit outward normal ve
tor at z 2 �
, we let (x"; y") 2 
� 
 the maximumpoint of u(x)� v(y)��(x; y) over 
�
. As in the proof of Theorem 3.4, we havelim"!0(x"; y") = (z; z) and lim"!0 jx" � y"j" = Æ: (5:16)Sin
e x" = y" � "Æn(z) + o(") 2 
 for small " > 0, in view of Lemma 3.6 withProposition 2.7, we 
an �nd X;Y 2 Sn su
h that�x" � y""2 + Æ"n(z) + 2Æ(x" � z);X + 2ÆI� 2 J2;+
 u(x");�x" � y""2 + Æ"n(z); Y � 2 J2;�
 v(y");and � 3"2  I OO I ! �  X OO �Y ! � 3"2  I �I�I I ! :Setting p" := "�2(x" � y") + Æ"�1n(z), we have�(u(x")� v(y")) � F (y"; p"; Y )� F (x"; p" + 2Æ(x" � z);X + 2ÆI)� !0(2Æjx" � zj+ 2Æ) + !̂F �jx" � y"j�1 + jp"j+ jx" � y"j" �� :70



Hen
e, sending "! 0 with (5.16), we have�� � !0(2Æ) + !̂F (2Æ2);whi
h is a 
ontradi
tion for small Æ > 0. 25.3 Neumann problemIn the 
lassi
al theory and modern theory for weak solutions in the distribu-tion sense, the (inhomogeneous) Neumann 
ondition is given byhn(x); Du(x)i � g(x) = 0 on �
;where n(x) denotes the unit outward normal ve
tor at x 2 �
.In Diri
hlet and state 
onstraint problems, we have used a test fun
tionwhi
h for
es one of x" and y" to be in 
. However, in the Neumann boundaryvalue problem (Neumann problem for short), we have to avoid the boundary
ondition for vis
osity sub- and supersolutions simultaneously. Thus, we needa new test fun
tion di�erent from those in se
tions 5.1 and 5.2.We �rst de�ne the signed distan
e fun
tion from 
 by�(x) := ( inffjx� yj j y 2 �
g for x 2 

;� inffjx� yj j y 2 �
g for x 2 
:In order to obtain the 
omparison prin
iple for the Neumann problem,we shall impose a hypothesis on 
 (see Fig 5.2):8>>><>>>: (1) There is r̂ > 0 su
h that
 � (Br̂(z + r̂n(z)))
 for z 2 �
:(2) There is a neighborhood N of �
 su
h that� 2 C2(N); and D�(x) = n(x) for x 2 �
: (5:17)Remark. This assumption (1) is 
alled the \uniform exterior sphere 
on-dition". Sin
e jx� z � r̂n(z)j � r̂ for z 2 �
 and x 2 
, we havehn(z); x� zi � jx� zj22r̂ for z 2 �
 and x 2 
: (5:18)It is known that when �
 is \smooth" enough, (2) of (5.17) holds true.71
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We shall 
onsider the inhomogeneous Neumann problem:( �u+ F (x;Du;D2u) = 0 in 
;hn(x); Dui � g(x) = 0 on �
: (5:19)Remember that we adapt the de�nition of vis
osity solutions of (5.19) forthe 
orresponding G in (5.2).Theorem 5.4. Assume that � > 0, (5:3), (5:4) and (5:17) hold. Forg 2 C(�
), we let u and v : 
! R be a vis
osity sub- and supersolution of(5:19), respe
tively.Then, u� � v� in 
.Remark. We note that we do not need any 
ontinuity of u and v on �
.Proof. As before, we write u and v for u� and v�, respe
tively.As in the proof of Theorem 3.7, we suppose that max
(u� v) =: � > 0.Also, we may suppose that max�
(u� v) = �.Let z 2 �
 be a point su
h that (u� v)(z) = �. For small Æ > 0, we seethat the mapping x 2 
! u(x)� v(y)� Æjx� zj2 takes its stri
t maximumat z.For small "; Æ > 0, where Æ > 0 will be �xed later, setting �(x; y) :=(2")�1jx � yj2 � g(z)hn(z); x � yi + Æ(�(x) + �(y) + 2) + Æjx � zj2, we let(x"; y") 2 
 � 
 be the maximum point of �(x; y) := u(x) � v(y)� �(x; y)over 
 \N � 
 \N , where N is in (5.17).Sin
e �(x"; y") � �(z; z), as before, we may extra
t a subsequen
e, whi
his denoted by (x"; y") again, su
h that (x"; y") ! (x̂; x̂). We may supposex̂ 2 �
. Sin
e �(x̂; x̂) � lim sup"!0�(x"; y"), we haveu(x̂)� v(x̂)� Æjx̂� zj2 � �;72



whi
h yields x̂ = z. Moreover, we havelim"!0 jx" � y"j2" = 0: (5:20)Applying Lemma 3.6 to u(x)� Æ(�(x)+ 1)� g(z)hn(z); xi� Æjx� zj2 and�v(y)� Æ(�(y) + 1) + g(z)hn(z); yi, we �nd X; Y 2 Sn su
h that�p" + Æn(x") + 2Æ(x" � z); X + ÆD2�(x") + 2ÆI� 2 J2;+
 u(x"); (5:21)�p" � Æn(y"); Y � ÆD2�(y")� 2 J2;�
 v(y"); (5:22)where p" := "�1(x" � y") + g(z)n(z), and�3"  I 00 I ! �  X 00 �Y ! � 3"  I �I�I I ! :When x" 2 �
, by (5.18), we 
al
ulate in the following manner:hn(x"); Dx�(x"; y")i = hn(x"); p" + Æn(x") + 2Æ(x" � z)i� �jx" � y"j22r̂" + g(z)hn(x");n(z)i + Æ � 2Æjx" � zj:Hen
e, given Æ > 0, we see thathn(x"); Dx�(x"; y")i � g(x") � Æ2 for small " > 0:Thus, by (5.21), this yields�u(x") + F (x"; p" + Æn(x") + 2Æ(x" � z); X + ÆD2�(x") + 2ÆI) � 0: (5:23)Of 
ourse, if x" 2 
, then the above inequality holds from the de�nition.On the other hand, similarly, if y" 2 �
, thenhn(y");�Dy�(x"; y")i � g(y") � �Æ2 for small " > 0:Hen
e, by (5.22), we have�v(y") + F (y"; p" � Æn(y"); Y � ÆD2�(y")) � 0: (5:24)73



Using (5.3) and (5.4), by (5.23) and (5.24), we have�(u(x")� v(y")) � F (y"; p"; Y )� F (x"; p"; X) + 2!0(ÆM)� !̂F  jx" � y"j 1 + jp"j+ jx" � y"j" !!+ 2!0(ÆM);where M := 3 + supx2N\
(2jx � zj + jD2�(x)j). Sending " ! 0 with (5.20)in the above, we have �� � 2!0(ÆM);whi
h is a 
ontradi
tion for small Æ > 0. 25.4 Growth 
ondition at jxj ! 1In the standard PDE theory, we often 
onsider PDEs in unbounded domains,typi
ally, in Rn. In this subse
tion, we present a te
hnique to establish the
omparison prin
iple for vis
osity solutions of�u + F (x;Du;D2u) = 0 in Rn: (5:25)We remind the readers that in the proofs of 
omparison results we alwayssuppose max
(u � v) > 0, where u and v are, respe
tively, a vis
osity sub-and supersolution. However, 
onsidering 
 := Rn, the maximum of u � vmight attain its maximum at \jxj ! 1". Thus, we have to 
hoose a testfun
tion �(x; y), whi
h for
es u(x)� v(y)� �(x; y) to takes its maximum ata point in a 
ompa
t set.For this purpose, we will suppose the linear growth 
ondition (for sim-pli
ity) for vis
osity solutions.We rewrite the stru
ture 
ondition (3.21) for Rn:8>>>>>><>>>>>>: There is an !F 2 M su
h that if X; Y 2 Sn and � > 1 satisfy�3� I 00 I ! �  X 00 �Y ! � 3� I �I�I I ! ;then F (y; �(x� y); Y )� F (x; �(x� y); X)� !F (jx� yj(1 + �jx� yj)) for x; y 2 Rn: (5:26)We will also need the Lips
hitz 
ontinuity of (p;X)! F (x; p;X), whi
his stronger than (5.3).( There is �0 > 0 su
h that jF (x; p;X)� F (x; q; Y )j� �0(jp� qj+ kX � Y k) for x 2 Rn; p; q 2 Rn; X; Y 2 Sn: (5:27)74



Proposition 5.5. Assume that � > 0, (5:26) and (5:27) hold. Let u andv : Rn ! R be, respe
tively, a vis
osity sub- and supersolution of (5:25).Assume also that there is C0 > 0 su
h thatu�(x) � C0(1 + jxj) and v�(x) � �C0(1 + jxj) for x 2 Rn: (5:28)Then, u� � v� in Rn.Proof. We shall simply write u and v for u� and v�, respe
tively.For Æ > 0, we set �Æ := supx2Rn(u(x)� v(x)� 2Æ(1+ jxj2)). We note that(5.28) implies that there is zÆ 2 Rn su
h that �Æ = u(zÆ)�v(zÆ)�2Æ(1+jzÆj2).Set � := lim supÆ!0 �Æ 2 R [ f1g.When � � 0, sin
e(u� v)(x) � 2Æ(1 + jxj2) + �Æ for Æ > 0 and x 2 Rn;we have u � v in Rn.Thus, we may suppose � 2 (0;1℄. Setting �Æ(x; y) := u(x) � v(y) �(2")�1jx � yj2 � Æ(1 + jxj2) � Æ(1 + jyj2) for "; Æ > 0, where Æ > 0 will be�xed later, in view of (5.28), we 
an 
hoose (x"; y") 2 Rn � Rn su
h that�Æ(x"; y") = max(x;y)2Rn�Rn �Æ(x; y) � �Æ.As before, extra
ting a subsequen
e if ne
essary, we may suppose thatlim"!0 jx" � y"j2" = 0: (5:29)By Lemma 3.6 with Proposition 2.7, putting p" := (x" � y")=", we �ndX; Y 2 Sn su
h that (p" + 2Æx"; X + 2ÆI) 2 J2;+u(x");(p" � 2Æy"; Y � 2ÆI) 2 J2;�v(y");and �3"  I OO I ! �  X OO �Y ! � 3"  I �I�I I ! :Hen
e, we have�(u(x")� v(y"))� F (y"; p" � 2Æy"; Y � 2ÆI)� F (x"; p" + 2Æx"; X + 2ÆI)� F (y"; p"; Y )� F (x"; p"; X) + 2Æ�0(2 + jx"j+ jy"j)� !F  jx" � y"j 1 + jx" � y"j" !!+ �Æ(2 + jx"j2 + jy"j2) + CÆ;75



where C = C(�0; �) > 0 is independent of "; Æ > 0. For the last inequality,we used \2ab � �a2 + ��1b2 for � > 0".Therefore, we have�� � !F  jx" � y"j 1 + jx" � y"j" !!+ CÆ:Sending " ! 0 in the above together with (5.29), we get �� � CÆ, whi
h isa 
ontradi
tion for small Æ > 0. 2
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6 Lp-vis
osity solutionsIn this se
tion, we dis
uss the Lp-vis
osity solution theory for uniformlyellipti
 PDEs: F (x;Du;D2u) = f(x) in 
; (6:1)where F : 
�Rn�Sn ! R and f : 
! R are given. Sin
e we will use thefa
t that u + C (for a 
onstant C 2 R) satis�es the same (6.1), we supposethat F does not depend on u itself. Furthermore, to 
ompare with 
lassi
alresults, we prefer to have the inhomogeneous term (the right hand side of(6.1)).The aim in this se
tion is to obtain the a priori estimates for Lp-vis
ositysolutions without assuming any 
ontinuity of the mapping x ! F (x; q;X),and then to establish an existen
e result of Lp-vis
osity solutions for Diri
hletproblems.Remark. In general, without the 
ontinuity assumption of x! F (x; p;X),even if X ! F (x; p;X) is uniformly ellipti
, we 
annot expe
t the unique-ness of Lp-vis
osity solutions. Be
ause Nadirashvili (1997) gave a 
ounter-example of the uniqueness.6.1 A brief historyLet us simply 
onsider the Poisson equation in a \smooth" domain 
 withzero-Diri
hlet boundary 
ondition:( �4u = f in 
;u = 0 on �
: (6:2)In the literature of the regularity theory for uniformly ellipti
 PDEs ofse
ond-order, it is well-known that\if f 2 C�(
) for some � 2 (0; 1), then u 2 C2;�(
)". (6:3)Here, C�(U) (for a set U � Rn) denotes the set of fun
tions f : U ! R su
hthat supx2U jf(x)j+ supx;y2U;x6=y jf(x)� f(y)jjx� yj� <1:
77



Also, Ck;�(U), for an integer k � 1, denotes the set of fun
tions f : U ! Rso that for any multi-index � = (�1; : : : ; �n) 2 f0; 1; 2; : : :gn with j�j :=Pni=1 �i � k, D�f 2 C�(U), whereD�f := �j�jf�x�11 � � ��x�nn :These fun
tion spa
es are 
alled H�older 
ontinuous spa
es and the impli
ationin (6.3) is 
alled the S
hauder regularity (estimates). Sin
e the PDE in(6.2) is linear, the regularity result (6.3) may be extended to\if f 2 Ck;�(
) for some � 2 (0; 1), then u 2 Ck+2;�(
)". (6:4)Moreover, we obtain that (6.4) holds for the following PDE:�tra
e(A(x)D2u(x)) = f(x) in 
; (6:5)where the 
oeÆ
ient A(�) 2 C1(
; Sn) satis�es that�j�j2 � hA(x)�; �i � �j�j2 for � 2 Rn and x 2 
:Furthermore, we 
an obtain (6.4) even for linear se
ond-order uniformlyellipti
 PDEs if the 
oeÆ
ients are smooth enough.Besides the S
hauder estimates, we know a di�erent kind of regularityresults: For a solution u of (6.5), and an integer k 2 f0; 1; 2; : : :g,\if f 2 W k;p(
) for some p > 1; then u 2 W k+2;p(
)". (6:6)Here, for an open set O � Rn, we say f 2 Lp(O) if jf jp is integrable in O,and f 2 W k;p(O) if for any multi-index � with j�j � k, D�f 2 Lp(O). Noti
ethat Lp(
) = W 0;p(
).This (6.6) is 
alled the Lp regularity (estimates). For a later 
on-venien
e, for p � 1, we re
all the standard norms of Lp(O) and W k;p(O),respe
tively:kukLp(O) := �ZO ju(x)jpdx�1=p ; and kukW k;p(O) := Xj�j�k kD�ukLp(O):In Appendix, we will use the quantity kukLp(
) even for p 2 (0; 1) althoughthis is not the \norm" (i:e: the triangle inequality does not hold).78



We refer to [13℄ for the details on the S
hauder and Lp regularity theoryfor se
ond-order uniformly ellipti
 PDEs.As is known, a diÆ
ulty o

urs when we drop the smoothness of Aij.An extreme 
ase is that we only suppose that Aij are bounded (possiblydis
ontinuous, but still satisfy the uniform ellipti
ity). In this 
ase, what 
anwe say about the regularity of \solutions" of (6.5) ?The extreme 
ase for PDEs in divergen
e form is the following:� nXi;j=1 ��xi  Aij(x) �u�xj (x)! = f(x) in 
: (6:7)De Giorgi (1957) �rst obtained H�older 
ontinuity estimates on weak so-lutions of (6.7) in the distribution sense; for any � 2 C10 (
),Z
 (hA(x)Du(x); D�(x)i � f(x)�(x)) dx = 0:Here, we setC10 (
) := ( � : 
! R ����� �(�) is in�nitely many times di�erentiable;and supp � is 
ompa
t in 
 ) :We refer to [14℄ for the details of De Giorgi's proof and, a di�erent proofby Moser (1960).Con
erning the 
orresponding PDE in nondivergen
e form, by a sto
has-ti
 approa
h, Krylov-Safonov (1979) �rst showed the H�older 
ontinuity esti-mates on \strong" solutions of�tra
e(A(x)D2u(x)) = f(x) in 
: (6:8)Afterward, Trudinger (1980) (see [13℄) gave a purely analyti
 proof for it.Sin
e these results appeared before the vis
osity solution was born, they
ould only deal with strong solutions, whi
h satisfy PDEs in the a:e: sense.In 1989, Ca�arelli proved the same H�older estimate for vis
osity solutionsof fully nonlinear se
ond-order uniformly ellipti
 PDEs.To show H�older 
ontinuity of solutions, it is essential to prove the follow-ing \Harna
k inequality" for nonnegative solutions. In fa
t, to prove theHarna
k inequality, we split the proof into two parts:79



weak Harna
k inequalityfor \super"solutionslo
al maximum prin
iplefor \sub"solutions
9>>>>>>=>>>>>>; =) Harna
k inequalityfor \solutions"In se
tion 6.4, we will show that Lp-vis
osity solutions satisfy the (inte-rior) H�older 
ontinuous estimates.6.2 De�nition and basi
 fa
tsWe �rst re
all the de�nition of Lp-strong solutions of general PDEs:F (x; u;Du;D2u) = f(x) in 
: (6:9)We will use the following fun
tion spa
e:W 2;plo
 (
) := fu : 
! R j �u 2 W 2;p(
) for all � 2 C10 (
)g:Throughout this se
tion, we suppose at leastp > n2so that u 2 W 2;plo
 (
) has the se
ond-order Taylor expansion at almost allpoints in 
, and that u 2 C(
).De�nition. We 
all u 2 C(
) an Lp-strong subsolution (resp., super-solution, solution) of (6.9) if u 2 W 2;plo
 (
), andF (x; u(x); Du(x); D2u(x)) � f(x) (resp., � f(x); = f(x)) a:e: in 
:Now, we present the de�nition of Lp-vis
osity solutions of (6.9).De�nition. We 
all u 2 C(
) an Lp-vis
osity subsolution (resp., su-persolution) of (6.9) if for � 2 W 2;plo
 (
), we havelim"!0 ess: infB"(x) �F (y; u(y); D�(y); D2�(y))� f(y)� � 080



 resp. lim"!0 ess: supB"(x) �F (y; u(y); D�(y); D2�(y))� f(y)� � 0!provided that u� � takes its lo
al maximum (resp., minimum) at x 2 
.We 
all u 2 C(
) an Lp-vis
osity solution of (6.9) if it is both an Lp-vis
osity sub- and supersolution of (6.9).Remark. Although we will not expli
itly utilize the above de�nition, were
all the de�nition of ess: supA and ess: infA of h : A ! R, where A � Rnis a measurable set:ess: supA h(y) := inffM 2 R j h �M a:e: in Ag;and ess: infA h(y) := supfM 2 R j h �M a:e: in Ag:Coming ba
k to (6.1), we give a list of assumptions on F : 
�Rn�Sn !R: 8><>: (1) F (x; 0; O) = 0 for x 2 
;(2) x! F (x; q;X) is measurable for (q;X) 2 Rn � Sn;(3) F is uniformly ellipti
. (6:10)We re
all the uniform ellipti
ity 
ondition of X ! F (x; q;X) with the 
on-stants 0 < � � � from se
tion 3.1.2.For the right hand side f : 
! R, we suppose thatf 2 Lp(
) for p � n: (6:11)We will often suppose the Lips
hitz 
ontinuity of F with respe
t to q 2Rn;( there is � � 0 su
h that jF (x; q;X)� F (x; q0; X)j � �jq � q0jfor (x; q; q0; X) 2 
�Rn �Rn � Sn: (6:12)Remark.We note that (1) in (6.10) and (6.12) imply that F has the lineargrowth in Du; jF (x; q; O)j � �jqj for x 2 
 and q 2 Rn:Remark. We note that when x ! F (x; q;X) and x ! f(x) are 
ontinu-ous, the de�nition of Lp-vis
osity subsolution (resp., supersolution) of (6.1)81




oin
ides with the standard one under assumption (6.10) and (6.12). For aproof, we refer to a paper by Ca�arelli-Crandall-Ko
an-�Swi�e
h [5℄.In this book, we only study the 
ase of (6.11) but most of results 
an beextended to the 
ase when p > p? = p?(�; �; n) 2 (n=2; n), where p? is theso-
alled Es
auriaza's 
onstant (see the referen
es in [4℄).The following proposition is obvious but it will be very 
onvenient tostudy Lp-vis
osity solutions of (6.1) under assumptions (6.10), (6.11) and(6.12).Proposition 6.1. Assume that (6:10), (6:11) and (6:12) hold. If u 2C(
) is an Lp-vis
osity subsolution (resp., supersolution) of (6:1), then it isan Lp-vis
osity subsolution (resp., supersolution) ofP�(D2u)� �jDuj � f in 
�resp., P+(D2u) + �jDuj � f in 
� :We re
all the Aleksandrov-Bakelman-Pu

i (ABP for short) maximumprin
iple, whi
h will play an essential role in this se
tion (and also Appendix).To this end, we introdu
e the notion of \upper 
onta
t sets": For u :O! R, we set�[u;O℄ := ( x 2 O ����� there is p 2 Rn su
h thatu(y) � u(x) + hp; y � xi for all y 2 O ) :Proposition 6.2. (ABP maximum prin
iple) For � � 0, there is C0 :=C0(�; �; n; �; diam(
)) > 0 su
h that if for f 2 Ln(
), u 2 C(
) is anLn-vis
osity subsolution (resp., supersolution) ofP�(D2u)� �jDuj � f in 
+[u℄(resp., P+(D2u) + �jDuj � f in 
+[�u℄);then max
 u � max�
 u+ + diam(
)C0kf+kLn(�[u;
℄\
+[u℄)�resp., max
 (�u) � max�
 (�u)+ + diam(
)C0kf�kLn(�[�u;
℄\
+[�u℄)� ;82
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 x
where 
+[u℄ := fx 2 
 j u(x) > 0g:The next proposition is a key tool to study Lp-vis
osity solutions, parti
-ularly, when f is not supposed to be 
ontinuous. The proof will be given inAppendix.Proposition 6.3. Assume that (6:11) holds for p � n. For any � � 0,there are an Lp-strong subsolution u and an Lp-strong supersolution v 2C(B1) \W 2;plo
 (B1), respe
tively, of( P+(D2u) + �jDuj � f in B1;u = 0 on �B1; and ( P�(D2v)� �jDvj � f in B1;v = 0 on �B1:Moreover, we have the following estimates: for w = u or w = v, and smallÆ 2 (0; 1), there is Ĉ = Ĉ(�; �; n; �; Æ) > 0 su
h thatkwkW 2;p(BÆ) � ĈÆkfkLp(B1):Remark. In view of the proof (Step 2) of Proposition 6.2, we see that�Ckf�kLn(B1) � w � Ckf+kLn(B1) in B1, where w = u; v.6.3 Harna
k inequalityIn this subse
tion, we often use the 
ubeQr(x) for r > 0 and x =t(x1; : : : ; xn) 2Rn; Qr(x) := fy =t(y1; : : : ; yn) j jxi � yij < r=2 for i = 1; : : : ; ng;83



and Qr := Qr(0). Noti
e thatBr=2(x) � Qr(x) � Brpn=2(x) for r > 0:We will prove the next two propositions in Appendix.Proposition 6.4. (Weak Harna
k inequality) For � � 0, there are p0 =p0(�; �; n; �) > 0 and C1 := C1(�; �; n; �) > 0 su
h that if u 2 C(B2pn) is anonnegative Lp-vis
osity supersolution ofP+(D2u) + �jDuj � 0 in B2pn;then we have kukLp0(Q1) � C1 infQ1=2 u:Remark. Noti
e that p0 might be smaller than 1.Proposition 6.5. (Lo
al maximum prin
iple) For � � 0 and q > 0,there is C2 = C2(�; �; n; �; q) > 0 su
h that if u 2 C(B2pn) is an Lp-vis
ositysubsolution of P�(D2u)� �jDuj � 0 in B2pn;then we have supQ1 u � C2ku+kLq(Q2):Remark. Noti
e that we do not suppose that u � 0 in Proposition 6.5.6.3.1 Linear growthThe next 
orollary is a dire
t 
onsequen
e of Propositions 6.4 and 6.5.Corollary 6.6. For � � 0, there is C3 = C3(�; �; n; �) > 0 su
h that ifu 2 C(B2pn) is a nonnegative Lp-vis
osity sub- and supersolution ofP�(D2u)� �jDuj � 0 and P+(D2u) + �jDuj � 0 in B2pn;respe
tively, then we have supQ1 u � C3 infQ1 u:84



In order to treat inhomogeneous PDEs, we will need the following 
orol-lary:Corollary 6.7. For � � 0 and f 2 Lp(B3pn) with p � n, there isC4 = C4(�; �; n; �) > 0 su
h that if u 2 C(B3pn) is a nonnegative Lp-vis
osity sub- and supersolution ofP�(D2u)� �jDuj � f and P+(D2u) + �jDuj � f in B2pn;respe
tively, then we havesupQ1 u � C4 �infQ1 u+ kfkLp(B3pn)� :Proof.A

ording to Proposition 6.3, we �nd v; w 2 C(B3pn)\W 2;plo
 (B3pn)su
h that ( P+(D2v) + �jDvj � �f+ a:e: in B3pn;v = 0 on �B3pn;and ( P�(D2w)� �jDwj � f� a:e: in B3pn;w = 0 on �B3pn:In view of Proposition 6.3 and its Remark, we 
an 
hoose Ĉ = Ĉ(�; �; n; �) >0 su
h that0 � �v � Ĉkf+kLp(B3pn) in B3pn; kvkW 2;p(B2pn) � Ĉkf+kLp(B3pn);and0 � w � Ĉkf�kLp(B3pn) in B3pn; kwkW 2;p(B2pn) � Ĉkf�kLp(B3pn):Sin
e v; w 2 W 2;p(B2pn), it is easy to verify that u1 := u + v andu2 := u+ w are, respe
tively, an Lp-vis
osity sub- and supersolution ofP�(D2u1)� �jDu1j � 0 and P+(D2u2) + �jDu2j � 0 in B2pn:Sin
e v � 0 in B3pn, applying Proposition 6.5 to u1, for any q > 0, we �ndC2(q) > 0 su
h thatsupQ1 u � supQ1 u1 + Ĉkf+kLp(B3pn)� C2(q)k(u1)+kLq(Q2) + Ĉkf+kLp(B3pn)� C2(q)kukLq(Q2) + Ĉkf+kLp(B3pn): (6:13)85



On the other hand, applying Proposition 6.4 to u2, there is p0 > 0 su
hthatkukLp0(Q2) � ku2kLp0 (Q2) � C1 infQ1 u2 � C1 �infQ1 u+ Ĉkf�kLp(B3pn)� : (6:14)Therefore, 
ombining (6.14) with (6.13) for q = p0, we 
an �nd C4 > 0 su
hthat the assertion holds. 2Corollary 6.8. (Harna
k inequality, �nal version) Assume that (6:10),(6:11) and (6:12) hold. If u 2 C(
) is an Lp-vis
osity solution of (6:1), andif B3pnr(x) � 
 for r 2 (0; 1℄, thensupQr(x) u � C4  infQr(x) u+ r2�np kfkLp(
)! ;where C4 > 0 is the 
onstant in Corollary 6.7.Proof. By translation, we may suppose that x = 0.Setting v(x) := u(rx) for x 2 B3pn, we easily see that v is an Lp-vis
ositysubsolution and supersolution ofP�(D2v)� �jDvj � r2f̂ and P+(D2v) + �jDvj � �r2f̂ ; in B3pn;respe
tively, where f̂(x) := f(rx). Note that kf̂kLp(B3pn) = r�np kfkLp(B3pnr).Applying Corollary 6.7 to v and then, res
aling v to u, we 
on
lude theassertion. 26.3.2 Quadrati
 growthHere, we 
onsider the 
ase when q ! F (x; q;X) has quadrati
 growth. Werefer to [10℄ for appli
ations where su
h quadrati
 nonlinearity appears.We present a version of the Harna
k inequality when F has a quadrati
growth in Du in pla
e of (6.12);( there is � � 0 su
h that jF (x; q;X)� F (x; q0; X)j� �(jqj+ jq0j)jq � q0j for (x; q; q0; X) 2 
�Rn �Rn � Sn; (6:15)whi
h together with (1) of (6.10) implies thatjF (x; q; O)j � �jqj2 for (x; q) 2 
�Rn:86



The asso
iated Harna
k inequality is as follows:Theorem 6.9. For � � 0 and f 2 Lp(B3pn) with p � n, there isC5 = C5(�; �; n; �) > 0 su
h that if u 2 C(B3pn) is a nonnegative Lp-vis
osity sub- and supersolution ofP�(D2u)� �jDuj2 � f and P+(D2u) + �jDuj2 � f in B3pn;respe
tively, then we havesupQ1 u � C5e 2�� M �infQ1 u+ kfkLp(B3pn)� ;where M := supB3pn u.Proof. Set � := �=�. Fix any Æ 2 (0; 1).We 
laim that v := e�u � 1 and w := 1 � e��u are, respe
tively, a non-negative Lp-vis
osity sub- and supersolution ofP�(D2v) � �(e�M + Æ)f+ and P+(D2w) � ��(1 + Æ)f� in B3pn:We shall only prove this 
laim for v sin
e the other for w 
an be obtainedsimilarly.Choose � 2 W 2;plo
 (B3pn) and suppose that u�� attains its lo
al maximumat x 2 B3pn. Thus, we may suppose that v(x) = �(x) and v � � in Br(x),where B2r(x) � B3pn. Note that 0 � v � e�M � 1 in B3pn.For any Æ 2 (0; 1), in view of W 2;p(Br(x)) � C�0(Br(x)) with some�0 2 (0; 1), we 
an 
hoose "0 2 (0; r) su
h that�Æ � � � v + Æ in B"0(x):Setting  (y) := ��1 log(�(y) + 1) for y 2 B"0(x) (extending  2 W 2;p inB3pn nB"0(x) if ne
essary), we havelim"!0 ess infB"(x) �P�(D2 )� �jD j2 � f+� � 0:Sin
e D = D��(�+ 1) and D2 = D2��(�+ 1) � D�
D��(�+ 1)2 ;87



the above inequality yieldslim"!0 ess infB"(x) P�(D2�)�(�+ 1) � f+! � 0:Sin
e 0 < 1� Æ � �+ 1 � e�M + Æ in B"0(x), we havelim"!0 ess infB"(x) �P�(D2�)� �(e�M + Æ)f+� � 0:Sin
e �u � v � �ue�M and �ue��M � w � �u, using the same argumentto get (6.13) and (6.14), we havesupQ1 u � 1� supQ1 v � C6 nkvkLp0(Q2) + (e�M + Æ)kf+kLp(B3pn)o� C7 ne2�MkwkLp0(Q2) + (e�M + Æ)kf+kLp(B3pn)o� C8 �e2�M infQ1 w + (e2�M + Æ)kfkLp(B3pn)�� C9e2�M �infQ1 u+ (1 + Æ)kfkLp(B3pn)� :Sin
e Ck (k = 6; : : : ; 9) are independent of Æ > 0, sending Æ ! 0, we 
on
ludethe proof. 2Remark. We note that the same argument by using two di�erent trans-formations for sub- and supersolutions as above 
an be found in [14℄ foruniformly ellipti
 PDEs in divergen
e form with the quadrati
 nonlinearity.6.4 H�older 
ontinuity estimatesIn this subse
tion, we show how the Harna
k inequality implies the H�older
ontinuity.Theorem 6.10. Assume that (6:10), (6:11) and (6:12) hold. For ea
h
ompa
t set K � 
, there is � = �(�; �; n; �; p; dist(K; �
); kfkLp(
)) 2(0; 1) su
h that if u 2 C(
) is an Lp-vis
osity solution of (6:1), then there isĈ = Ĉ(�; �; n; �; p; dist(K; �
);max
 juj; kfkLp(
)) > 0ju(x)� u(y)j � Ĉjx� yj� for x; y 2 K:Remark. We noti
e that � is independent of sup
 juj.88



In our proof below, we may relax the dependen
e max
 juj in Ĉ bysupfju(x)j j dist(x;K) < "g for small " > 0:Proof. Setting r0 := minf1;dist(K; �
)=(3pn)g > 0, we may supposethat there is C4 > 1 su
h that if w 2 C(
) is a nonnegative Lp-vis
ositysub- and supersolution ofP�(D2w)� �jDwj � f and P+(D2w) + �jDwj � f in 
;respe
tively, then we see that for any r 2 (0; r0℄ and x 2 K (i:e: B3pnr(x) �
), supQr(x)w � C4  infQr(x)w + r2�np kfkLp(
)! :For simpli
ity, we may suppose x = 0 2 K.Now, we setM(r) := supQr u; m(r) := infQr u and os
(r) :=M(r)�m(r):It is suÆ
ient to �nd C > 0 and � 2 (0; 1) su
h thatM(r)�m(r) � Cr� for small r > 0:We denote by S(r) the set of all nonnegative w 2 C(B3pnr), whi
h is,respe
tively, an Lp-vis
osity sub- and supersolution ofP�(D2w)� �jDwj � jf j and P+(D2w) + �jDwj � �jf j in B3pnr:Setting v1 := u�m(r) and w1 :=M(r)�u, we see that v1 and w1 belongto S(r). Hen
e, setting C10 := maxfC4kfkLp(
); C4; 4g > 3, we havesupQr=2 v1 � C10  infQr=2 v1 + r2�np! and supQr=2w1 � C10  infQr=2w1 + r2�np! :Thus, setting � := 2� np > 0, we haveM(r=2)�m(r) � C10 �m(r=2)�m(r) + (r=2)�� ;M(r)�m(r=2) � C10 �M(r)�M(r=2) + (r=2)�� :89



Hen
e, adding these inequalities, we have(C10 + 1)(M(r=2)�m(r=2)) � (C10 � 1)(M(r)�m(r)) + 2C10(r=2)�:Therefore, setting � := (C10�1)=(C10+1) 2 (1=2; 1) and C11 := 2C10=(C10+1), we see that os
(r=2) � �os
(r) + C11(r=2)�:Moreover, 
hanging r=2k�1 for integers k � 2, we haveos
(r=2k) � �kos
(r) + C11r� kXj=1 2��j� �kos
(r0) + C112� � 1r� � C12(�k + r�);where C12 := maxfos
(r0); C11=(2� � 1)g.For r 2 (0; r0), by setting s = r�, where � = log �=(log ��� log 2) 2 (0; 1),there is a unique integer k � 1 su
h thats2k � r < s2k�1 ;whi
h yields log(s=r)log 2 � k < log(s=r)log 2 + 1:Hen
e, re
alling � 2 (1=2; 1), we haveos
(r) � os
(s=2k�1) � C12(�k + (2s)�) � 2�C12 ��(��1) log r= log 2 + r��� :Setting � := (�� 1) log �= log 2 2 (0; 1) (be
ause � 2 (1=2; 1)), we have�(��1) log r= log 2 = r� and r�� = r�:Thus, setting C13 := 2�C12, we haveos
(r) � C13r�: 2 (6:16)Remark. We note that we may derive (6.16) when p > n=2 by taking� = 2� np > 0.We shall give the 
orresponding H�older 
ontinuity for PDEs with quadrati
nonlinearity (6.15). Sin
e we 
an use the same argument as in the proof of90



Theorem 6.1 using Theorem 6.9 instead of Corollaries 6.7 and 6.8, we omitthe proof of the following:Corollary 6.11. Assume that (6:10), (6:11) and (6:15) hold. For ea
h
ompa
t set K � 
, there are Ĉ = Ĉ(�; �; n; �; p; dist(K; �
); sup
 juj) > 0and � = �(�; �; n; �; p; dist(K; �
); sup
 juj) 2 (0; 1) su
h that if an Lp-vis
osity solution u 2 C(
) of (6:1), then we haveju(x)� u(y)j � Ĉjx� yj� for x; y 2 K:Remark. Note that both of � and Ĉ depend on sup
 juj in this quadrati

ase.6.5 Existen
e resultFor the existen
e of Lp-vis
osity solutions of (6.1) under the Diri
hlet 
ondition,we only give an outline of proof, whi
h was �rst shown in a paper by Crandall-Ko
an-Lions-�Swi�e
h in [7℄ (1999).Theorem 6.12. Assume that (6:10), (6:11) and (6:12) hold. Assume also that(1) of (5:17) holds.For given g 2 C(�
), there is an Lp-vis
osity solution u 2 C(
) of (6:1) su
hthat u(x) = g(x) for x 2 �
: (6:17)Remark. We may relax assumption (1) of (5.17) so that the assertion holds for
 whi
h may have some \
on
ave" 
orners. Su
h a 
ondition is 
alled \uniformexterior 
one 
ondition".Sket
h of proof.Step1: We �rst solve approximate PDEs, whi
h have to satisfy a suÆ
ient
ondition in Step 3; instead of (6.1), under (6.17), we 
onsiderFk(x;Du;D2u) = fk in 
; (6:18)where \smooth" Fk and fk approximate F and f , respe
tively. In fa
t, Fk and fkare given by F ��1=k and f ��1=k, where �1=k is the standard molli�er with respe
tto x-variables. We remark that F � �1=k means the 
onvolution of F (�; p;X) and�1=k. 91



We �nd a vis
osity solution uk 2 C(
) of (6.18) under (6.17) via Perron'smethod for instan
e. At this stage, we need to suppose the smoothness of �
 to
onstru
t vis
osity sub- and supersolutions of (6.18) with (6.17). Remember thatif F and f are 
ontinuous, then the notion of Lp-vis
osity solutions equals to thatof the standard ones (see Proposition 2.9 in [5℄).In view of (1) of (5.17) (i:e: the uniform exterior sphere 
ondition), we 
an
onstru
t vis
osity sub- and supersolutions of (6.18) denoted by � 2 USC(
) and� 2 LSC(
) su
h that � = � = g on �
. To show this fa
t, we only note that we
an modify the argument in Step 1 in se
tion 7.3.Step 2: We next obtain the a priori estimates for uk so that they 
onverge toa 
ontinuous fun
tion u 2 C(
), whi
h is the 
andidate of the original PDE.For this purpose, after having established the L1 estimates via Proposition6.2, we apply Theorem 6.10 (interior H�older 
ontinuity) to uk in Step 1 be
ause(6.10)-(6.12) hold for approximate PDEs with the same 
onstants �;�; �.We need a 
areful analysis to get the equi-
ontinuity up to the boundary �
.See Step 1 in se
tion 7.3 again.Step 3: Finally, we verify that the limit fun
tion u is the Lp-vis
osity solutionvia the following stability result, whi
h is an Lp-vis
osity version of Proposition4.8.To state the result, we introdu
e some notations: For B2r(x) � 
 with r > 0and x 2 
, and � 2W 2;p(Br(x)), we setGk[�℄(y) := Fk(y;D�(y);D2�(y))� fk(y);and G[�℄(y) := F (y;D�(y);D2�(y))� f(y)for y 2 Br(x).Proposition 6.13. Assume that Fk and F satisfy (6:10) and (6:12) with�;� > 0 and � � 0. For f; fk 2 Lp(
) with p � n, let uk 2 C(
) be an Lp-vis
ositysubsolution (resp., supersolution) of (6:18). Assume also that uk 
onverges to uuniformly on any 
ompa
t subsets of 
 as k ! 1, and that for any B2r(x) � 
with r > 0 and x 2 
, and � 2W 2;p(Br(x)),limk!1 k(G[�℄ �Gk[�℄)+kLp(Br(x)) = 0�resp., limk!1 k(G[�℄ �Gk[�℄)�kLp(Br(x)) = 0� :Then, u 2 C(
) is an Lp-vis
osity subsolution (resp., supersolution) of (6:1).92



Proof of Proposition 6.13. We only give a proof of the assertion for subsolu-tions.Suppose the 
ontrary: There are r > 0, " > 0, x 2 
 and � 2 W 2;p(B2r(x))su
h that B3r(x) � 
, 0 = (u� �)(x) � (u� �)(y) for y 2 B2r(x), andu� � � �" in B2r(x) n Br(x); (6:19)and G[�℄(y) � " a:e: in B2r(x): (6:20)For simpli
ity, we shall suppose that r = 1 and x = 0.It is suÆ
ient to �nd �k 2W 2;p(B2) su
h that limk!1 supB2 j�kj = 0, andGk[�+ �k℄(y) � " a:e: in B2:Indeed, sin
e uk � (� + �k) attains its maximum over B2 at an interior pointz 2 B2 by (6.19), the above inequality 
ontradi
ts the fa
t that uk is an Lp-vis
osity subsolution of (6.18).Setting h(x) := G[�℄(x) and hk(x) := Gk[�℄(x), in view of Proposition 6.3, we
an �nd �k 2 C(B2) \W 2;plo
 (B2) su
h that8>>><>>>: P�(D2�k)� �jD�kj � (h� hk)+ a:e: in B2;�k = 0 on �B2;0 � �k � Ck(h� hk)+kLp(B2) in B2;k�kkW 2;p(B1) � Ck(h� hk)+kLp(B2):We note that our assumption together with the third inequality in the above yieldslimk!1 supB2 j�kj = 0.Using (6.10), (6.12) and (6.20), we haveGk[�+ �k℄ � P�(D2�k)� �jD�kj+ hk� (h� hk)+ + "� (h� hk)� " a:e: in B2: 2
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7 AppendixIn this appendix, we present proofs of the propositions, whi
h appeared in theprevious se
tions. However, to prove them, we often need more fundamentalresults, for whi
h we only give referen
es. One of su
h results is the following\Area formula", whi
h will be employed in se
tions 7.1 and 7.2. We refer to[9℄ for a proof of a more general Area formula.Area formula� 2 C1(Rn;Rn);g 2 L1(Rn);A � Rn measurable 9>=>; =) Z�(A) jg(y)jdy � ZA jg(�(x))jjdet(D�(x))jdxWe note that the Area formula is a 
hange of variable formula whenjdet(D�)j may vanish. In fa
t, the equality holds if jdet(D�)j > 0 and � isinje
tive.7.1 Proof of Ishii's lemmaFirst of all, we re
all an important result by Aleksandrov. We refer to theAppendix of [6℄ and [10℄ for a \fun
tional analyti
" proof, and to [9℄ for a\measure theoreti
" proof.Lemma 7.1. (Theorem A.2 in [6℄) If f : Rn ! R is 
onvex, then fora:a: x 2 Rn, there is (p;X) 2 Rn � Sn su
h thatf(x + h) = f(x) + hp; hi+ 12hXh; hi+ o(jhj2) as jhj ! 0:(i:e:, f is twi
e di�erentiable at a:a: x 2 Rn:)We next re
all Jensen's lemma, whi
h is a version of the ABP maximumprin
iple in 7.2 below.Lemma 7.2. (Lemma A.3 in [6℄) Let f : Rn ! R be semi-
onvex(i:e: x ! f(x) + C0jxj2 is 
onvex for some C0 2 R). Let x̂ 2 Rn be a stri
tmaximum point of f . Set fp(x) := f(x)� hp; xi for x 2 Rn and p 2 Rn.Then, for r > 0, there are C1; Æ0 > 0 su
h thatj�r;Æj � C1Æn for Æ 2 (0; Æ0℄;94



where�r;Æ := nx 2 Br(x̂) ���9p 2 BÆ su
h that fp(y) � fp(x) for y 2 Br(x̂)o :Proof. By translation, we may suppose x̂ = 0.For integers m, we set fm(x) = f � �1=m(x), where �1=m is the molli�er.Note that x! fm(x) + C0jxj2 is 
onvex.Setting�mr;Æ = nx 2 Br ���9p 2 BÆ su
h that fmp (y) � fmp (x) for y 2 Bro ;where fmp (x) = fm(x)�hp; xi, we 
laim that there are C1; Æ0 > 0, independentof large integers m, su
h thatj�mr;Æj � C1Æn for Æ 2 (0; Æ0℄:We remark that this 
on
ludes the assertion. In fa
t, setting Am := [1k=m�kr;Æ,we have \1m=1Am � �r;Æ. Be
ause, for x 2 \1m=1Am, we 
an sele
t pk 2 BÆand mk su
h that limk!1mk =1, andmaxBr fmkpk = fmkpk (x):Hen
e, sending k ! 1 (along a subsequen
e if ne
essary), we �nd p̂ 2 BÆsu
h that maxBr fp̂ = fp̂(x), whi
h yields x 2 �r;Æ.Therefore, we haveC1Æn � limm!1 jAmj = j \1m=1 Aj � j�r;Æj:Now we shall prove our 
laim. First of all, we noti
e that x ! fm(x) +C0jxj2 is 
onvex.Sin
e 0 is the stri
t maximum of f , we �nd "0 > 0 su
h that"0 = f(0)� maxB4r=3nBr=3 f:Fix p 2 BÆ0 , where Æ0 = "0=(3r). For m � 3=r, we note thatfm(x)� hp; xi � f(0)� "0 + Æ0r � f(0)� 2"03 in Br nB2r=3:95



On the other hand, for large m, we verify thatfm(0) � f(0)� !f(m�1) > f(0)� "03 ;where !f denotes the modulus of 
ontinuity of f . Hen
e, in view of theseobservations, for any p 2 BÆ0 , if maxBr fmp = fmp (x) for x 2 Br, then x 2 Br.In other words, we see thatBÆ = Dfm(�mr;Æ) for Æ 2 (0; Æ0℄:Thanks to the Area formula, we havejBÆj = ZDfm(�mr;Æ) dy � Z�mr;Æ jdetD2fmjdx � (2C0)nj�mr;Æj:Here, we have employed that �2C0I � D2fm � O in �mr;Æ. 2Although we 
an �nd a proof of the next proposition in [6℄, we re
all theproof with a minor 
hange for the reader's 
onvenien
e.Proposition 7.3. (Lemma A.4 in [6℄) If f 2 C(Rm), B 2 Sm, � !f(�) + (�=2)j�j2 is 
onvex and max�2Rmff(�) � 2�1hB�; �ig = f(0), thenthere is an X 2 Sm su
h that(0; X) 2 J2;+f(0) \ J2;�f(0) and � �I � X � B:Proof. For any Æ > 0, setting fÆ(�) := f(�)� 2�1hB�; �i� Æj�j2, we noti
ethat the semi-
onvex fÆ attains its stri
t maximum at � = 0.In view of Lemmas 7.1 and 7.2, there are �Æ; qÆ 2 BÆ su
h that � !fÆ(�) + hqÆ; �i has a maximum at �Æ, at whi
h f is twi
e di�erentiable.It is easy to see that Df(�Æ) ! 0 (as Æ ! 0) and, moreover, from the
onvexity of � ! f(�) + (�=2)j�j2,��I � D2f(�Æ) � B + 2ÆI:Noting (Df(�Æ); D2f(�Æ)) 2 J2;+f(�Æ) \ J2;�f(�Æ), we 
on
lude the assertionby taking the limit as Æ ! 0. 2We next give a \magi
" property of sup-
onvolutions. For the reader's
onvenien
e, we put the proof of [6℄. 96



Lemma 7.4. (Lemma A.5 in [6℄) For v 2 USC(Rn) with supRn v < 1and � > 0, we set v̂(�) := supx2Rn  v(x)� �2 jx� �j2! :For �; q 2 Rn, Y 2 Sn, and (q; Y ) 2 J2;+v̂(�), we have(q; Y ) 2 J2;+v(� + ��1q) and v̂(�) + jqj22� = v(� + ��1q):In parti
ular, if (0; Y ) 2 J2;+v̂(0), then (0; Y ) 2 J2;+v(0).Proof. For (q; Y ) 2 J2;+v̂(�), we 
hoose y 2 Rn su
h thatv̂(�) = v(y)� �2 jy � �j2:Thus, from the de�nition, we see that for any x; � 2 Rn,v(x)� �2 j� � xj2 � v̂(�) � v̂(�) + hq; � � �i+12hY (� � �); � � �i+ o(j� � �j2)= v(y)� �2 jy � �j2 + hq; � � �i+12hY (� � �); � � �i+ o(j� � �j2):Taking � = x� y + � in the above, we have (q; Y ) 2 J2;+v(y).To verify that y = � + ��1q, putting x = y and � = � � "(�(� � y) + q)for " > 0 in the above again, we have"j�(� � y) + qj2 � o(");whi
h yield y = � + 1�q.When (0; Y ) 2 J2;+v̂(0), we 
an 
hoose (�k; qk; Yk) su
h that limk!1(�k; v̂(�k); qk; Yk) =(0; v̂(0); 0; O), and (qk; Yk) 2 J2;+v̂(�k). Sin
e (qk; Yk) 2 J2;+v(�k + ��1qk)and v̂(�k) + (2�)�1jqkj2 = v(�k + ��1qk), sending k ! 1, we have (0; Y ) 2J2;+v(0). 2 97



Proof of Lemma 3.6. First of all, extending upper semi-
ontinuous fun
-tions u; w in 
 into Rn by �1 in Rn n
, we shall work in Rn�Rn insteadof 
� 
.By translation, we may suppose that x̂ = ŷ = 0, at whi
h u(x) + w(y)��(x; y) attains its maximum.Furthermore, repla
ing u(x), w(y) and �(x; y), respe
tively, byu(x)� u(0)� hDx�(0; 0); xi; w(y)� w(0)� hDy�(0; 0); yiand �(x; y)� �(0; 0)� hDx�(0; 0); xi � hDy�(0; 0); yi;we may also suppose that �(0; 0) = u(0) = w(0) = 0 and D�(0; 0) = (0; 0) 2Rn �Rn.Sin
e �(x; y) = *A2  xy ! ; xy !++o(jxj2+jyj2), where A := D2�(0; 0) 2S2n, for ea
h � > 0, we see that the mapping (x; y) ! u(x) + w(y) �12 *(A+ �I) xy ! ; xy !+ attains its (stri
t) maximum at 0 2 R2n.We will show the assertion for A+�I in pla
e of A. Then, sending � ! 0,we 
an 
on
lude the proof. Therefore, we need to prove the following:Simpli�ed version of Ishii's lemma.For upper semi-
ontinuous fun
tions u and w in Rn, we suppose thatu(x) + w(y)� *A2  xy ! ; xy !+ � u(0) + w(0) = 0 in Rn �Rn:Then, for ea
h � > 1, there are X; Y 2 Sn su
h that (0; X) 2 J2;+u(0),(0; Y ) 2 J2;+w(0) and �(� + kAk) I OO I ! �  X OO Y ! � A+ 1�A2.Proof of the simpli�ed version of Lemma 3.6. Sin
e H�older's inequality im-plies *A xy ! ; xy !+ � * A+ 1�A2! �� ! ; �� !++(�+ kAk)(jx� �j2 + jy � �j2)for x; y; �; � 2 Rn and � > 0, setting � = �+ kAk, we haveu(x)� �2 jx� �j2 + w(y)� �2 jy � �j2 � 12 * A + 1�A2! �� ! ; �� !+ :98



Using the notation in Lemma 7.4, we denote by û and ŵ the sup-
onvolutionof u and w, respe
tively, with the above � > 0. Thus, we haveû(�) + ŵ(�) � 12 * A+ 1�A2! �� ! ; �� !+ for all �; � 2 Rn:Sin
e û(0) � u(0) = 0 and ŵ(0) � w(0) = 0, the above inequality impliesû(0) = ŵ(0) = 0.In view of Proposition 7.3 with m = 2n, f(�; �) = û(�) + ŵ(�) andB = A+ ��1A2, there is Z 2 S2n su
h that (0; Z) 2 J2;+f(0; 0)\ J2;�f(0; 0)and ��I � Z � B.Hen
e, from the de�nition of J2;�, it is easy to verify that there areX; Y 2Sn su
h that (0; X) 2 J2;+û(0)\J2;�û(0), (0; Y ) 2 J2;+ŵ(0)\J2;�ŵ(0), andZ =  X OO Y ! :Applying the last property in Lemma 7.4 to û and ŵ, we see that(0; X) 2 J2;+u(0) and (0; Y ) 2 J2;+w(0): 27.2 Proof of the ABP maximum prin
ipleFirst of all, we remind the readers of our strategy in this and the next sub-se
tions.We �rst show that the ABP maximum prin
iple holds under f 2 Ln(
)\C(
) in Steps 1 and 2 of this subse
tion. Next, using this fa
t, we estab-lish the existen
e of Lp-strong solutions of \Pu

i" equations in the nextsubse
tion when f 2 Lp(
).Employing this existen
e result, in Step 3, we �nally prove Proposition6.2; the ABP maximum prin
iple when f 2 Ln(
).ABP maximum prin
iple for f 2 Ln(
) \ C(
) (Se
tion 7.2)+Existen
e of Lp-strong solutions of Pu

i equations (Se
tion 7.3)+ABP maximum prin
iple for f 2 Ln(
) (Se
tion 7.2)99



Proof of Proposition 6.2. We give a proof in [5℄ for the subsolution asser-tion of Proposition 6.2.By s
aling, we may suppose that diam(
) � 1.Setting r0 := max
 u�max�
 u+;we may also suppose that r0 > 0 sin
e otherwise, the 
on
lusion is obvious.We �rst introdu
e the following notation: For u : 
! R and r � 0,�r := nx 2 
 ���9p 2 Br su
h that u(y) � u(x) + hp; y � xi for y 2 
o :Re
alling the upper 
onta
t set in se
tion 6.2, we note that�[u;
℄ = [r>0�r:Step 1: u 2 C2(
) \ C(
). We �rst 
laim that for r 2 (0; r0),( (i) Br = Du(�r);(ii) D2u � O in �r: (7:1)To show (i), for p 2 Br, we take x̂ 2 
 su
h that u(x̂) � hp; x̂i =maxx2
(u(x) � hp; xi). Sin
e u(x) � u(x̂) � r < r0 for x 2 
, taking themaximum over 
, we have x̂ 2 
. Hen
e, we see p = Du(x̂), whi
h 
on
ludes(i).For x 2 �r, Taylor's formula yieldsu(y) = u(x) + hDu(x); y � xi+ 12hD2u(x)(y � x); y � xi+ o(jy � xj2):Hen
e, we have 0 � hD2u(x)(y � x); y � xi + o(jy � xj2), whi
h shows (ii).Now, we introdu
e fun
tions g�(p) := �jpjn=(n�1) + �n=(n�1)�1�n for � > 0.We shall simply write g for g�.Thus, for r 2 (0; r0), we see thatZDu(�r) g(p)dp � Z�r g(Du(x))jdet(D2u(x))jdx= Z�r �jDujn=(n�1) + �n=(n�1)�1�n jdetD2u(x)jdx:Re
alling (7.1), we utilize jdetD2uj � (�tra
e(D2u)=n)n in �r to �ndC > 0 su
h thatZBr g(p)dp � C Z�r �jDujn=(n�1) + �n=(n�1)�1�n (�tra
e(D2u))ndx: (7:2)100



Thus, sin
e (�jDuj+f+)n � g(Du)�1(�n+��n(f+)n) by H�older's inequality,we have ZBr g(p)dp � C Z�r  �n +  f+� !n! dx: (7:3)On the other hand, sin
e (jpjn + �n)�1 � g(p), we havelog�� r��n + 1� � C ZBr 1jpjn + �ndp � C ZBr g(p)dp:Hen
e, noting �r � 
+[u℄ for r 2 (0; r0), by (7.3), we haver � � "exp(C Z�[u;
℄\
+[u℄  �n +  f+� !n! dx)� 1#1=n : (7:4)When kf+kLn(�[;
℄\
+[u℄) = 0, then sending �! 0, we get a 
ontradi
tion.Thus, we may suppose that kf+kLn(�[;
℄\
+[u℄) > 0.Setting � := kf+kLn(�[u;
℄\
+[u℄) and r := r0=2, we 
an �nd C > 0,independent of u, su
h that r0 � Ckf+kLn(�[u;
℄\
+[u℄).Remark. We note that we do not need to suppose f to be 
ontinuous inStep 1 while we need it in the next step.Step 2: u 2 C(
) and f 2 Ln(
) \ C(
). First of all, be
ause of f 2C(
), we remark that u is a \standard" vis
osity subsolution ofP�(D2u)� �jDuj � f in 
+[u℄:(See Proposition 2.9 in [5℄.)Let u" be the sup-
onvolution of u for " > 0;u"(x) := supy2
 (u(y)� jx� yj22" ) :Note that u" is semi-
onvex and thus, twi
e di�erentiable a:e: in Rn.We 
laim that for small " > 0, u" is a vis
osity subsolution ofP�(D2u")� �jDu"j � f " in 
"; (7:5)where f "(x) := supff+(y) j jx � yj � 2(kukL1(
)")1=2g and 
" := fx 2
+[u℄ j dist(x; �
+[u℄) > 2(kukL1(
)")1=2g. Indeed, for x 2 
" and (q;X) 2101



J2;+u"(x), 
hoosing x̂ 2 
 su
h that u"(x) = u(x̂)� (2")�1jx� x̂j2, we easilyverify that jqj = "�1jx̂ � xj � 2qkukL1(
)=". Thus, by Lemma 7.4, we seethat (q;X) 2 J2;+u(x+ "q). Hen
e, we haveP�(X)� �jqj � f+(x+ "q) � f "(x):We note that for small " > 0, we may suppose thatr" := max
" u" �max�
" (u")+ > 0: (7:6)Here, we list some properties on upper 
onta
t sets: For small Æ > 0, weset 
Æ := fx 2 
 j dist(x; �
) > Æg:Lemma 7.5. Let vÆ 2 C(
Æ) and v 2 C(
) satisfy that vÆ ! v uniformlyon any 
ompa
t sets in 
 as Æ ! 0. Assume that r̂ := max
 v�max�
 v+ > 0.Then, for r 2 (0; r̂), we have the following properties:8>>>>>>>><>>>>>>>>:
(1) �r[v;
℄is a 
ompa
t set in 
+[v℄;(2) lim supÆ!0 �r[vÆ;
Æ℄ � �r[v;
℄;(3) for small � > 0; there is Æ�su
h that [0�Æ<Æ� �r[vÆ;
Æ℄ � �̂�r ;where �̂�r := fx 2 
 j dist(x;�r[v;
℄) < �g;(4) xk 2 
Æk ! x 2 
 as k !1; then; lim infk!1 vÆk(xk) � v(x):Proof of Lemma 7.5. To show (1), we �rst need to observe that for r 2(0; r̂), dist(�r[v;
℄; �
) > 0. Suppose the 
ontrary; if there is xk 2 �r[v;
℄su
h that xk 2 
 ! x̂ 2 �
, then there is pk 2 Br su
h that v(y) �v(xk) + hpk; y � xki for y 2 
. Hen
e, sending k!1, we havemax
 v �max�
 v+ � r < r̂;whi
h is a 
ontradi
tion. Thus, we 
an �nd a 
ompa
t set K � 
 su
h that�r[v;
℄ � K.Moreover, if v(x) � 0 for x 2 �r[v;
℄, then we get a 
ontradi
tion:r̂ � max
 v � r < r̂:102



Next, 
hoose x 2 lim supÆ!0 �r[vÆ;
Æ℄. Then, for any k � 1, there areÆk 2 (0; 1=k) and pk 2 Br su
h thatvÆk(y) � vÆk(x) + hpk; y � xi for y 2 
Æk :We may suppose pk ! p for some p 2 Br taking a subsequen
e if ne
essary.Sending k !1 in the above, we see that x 2 �r[v;
℄.If (3) does not hold, then there are �0 > 0, Æk 2 (0; 1=k) and xk 2�r[vÆk ;
Æk ℄n �̂�0r . We may suppose again that limk!1 xk = x̂ for some x̂ 2 
.When x̂ 2 �
, sin
e there is pk 2 Br su
h that vÆk(y) � vÆk(xk)+ hpk; y�xkifor y 2 
, we have r̂ < r̂, whi
h is a 
ontradi
tion. Thus, we may supposethat x̂ 2 
 and, then x̂ 2 �r[v;
℄. Thus, there is k0 � 1 su
h that xk 2 �̂�0rfor k � k0, whi
h is a 
ontradi
tion. 2For Æ > 0, we set u"Æ := u" � �Æ, where �Æ is the standard molli�er. We set~�";Ær := �r[u"Æ;
"℄ for r 2 (0; r"Æ), where r"Æ := max
" u"Æ�max�
"(u"Æ)+. Noti
ethat for small Æ > 0, r"Æ > 0.In view of the argument to derive (7.2) in Step 1, we haveZBr g(p)dp � C Z~�";Ær �jDu"Æjn=(n�1) + �n=(n�1)�1�n (�tra
e(D2u"Æ))ndxfor small r > 0.Also, by the same argument for (ii) in (7.1), we 
an show that D2u"Æ(x) �O in ~�";Ær . Furthermore, from the de�nition of u", we verify that �"�1I �D2u"Æ(x) in 
".Hen
e, sending Æ ! 0 with Lemma 7.5 (3), we haveZBr g(p)dp � C Z�r[u";
"℄ �jDu"jn=(n�1) + �n=(n�1)�1�n (�tra
e(D2u"))ndx� C Z�r[u";
"℄  �n +  f "� !n! dx:Therefore, sending "! 0 (again with Lemma 7.5 (3)), we obtain (7.4), whi
himplies the 
on
lusion.Remark. Using the ABP maximum prin
iple in Step 2 (i:e: f 2 C(
)), we
an give a proof of Proposition 6.3, whi
h will be seen in se
tion 7.3. Thus,in Step 3 below, we will use Proposition 6.3.103



Step 3: u 2 C(
) and f 2 Ln(
). Let fk 2 C(
) be nonnegative fun
-tions su
h that kfk � f+kLn(
) ! 0 as k!1.In view of Proposition 6.3, we 
hoose �k 2 C(
) \W 2;nlo
 (
) su
h that8><>: P+(D2�k) + �jD�kj = fk � f+ a:e: in 
;�k = 0 on �
;k�kkL1(
) � Ckfk � f+kLn(
):Setting wk := u+ �k �k�kkL1(
), we easily verify that wk is an Ln-vis
ositysubsolution of P�(D2wk)� �jDwkj � fk in 
:Note that 
+[wk℄ � 
+[u℄.Thus, by Step 2, we havemax
 wk � max�
 wk + Ck(fk)+kLn(�r[wk;
℄\
+[u℄):Therefore, sending k !1 with Lemma 7.5 (2), we �nish the proof. 27.3 Proof of existen
e results for Pu

i equationsWe shall solve Pu

i equations under the Diri
hlet 
ondition in 
. For sim-pli
ity of statemants, we shall treat the 
ase when 
 is a ball though we willneed the existen
e result in smooth domains later. To extend the result forgeneral 
 with smooth boundary, we only need to modify the fun
tion vz inthe argument below.For � � 0 and f 2 Lp(B1) with p � n,( P�(D2u)� �jDuj � f in B1;u = 0 on �B1; (7:7)and ( P+(D2u) + �jDuj � f in B1;u = 0 on �B1: (7:8)Note that the �rst estimate of (7.10) is valid by Proposition 6.2 when theinhomogeneous term is 
ontinuous.Sket
h of proof. We only show the assertion for (7.8).Step 1: f 2 C1(B1). We shall 
onsider the 
ase when f 2 C1(B1).104



Set S�;� := fA := (Aij) 2 Sn j �I � A � �Ig. We 
an 
hoose a 
ountableset S0 := fAk := (Akij) 2 S�;�g1k=1 su
h that S0 = S�;�.Noting that �jqj = maxfhb; qi j b 2 �B�g for q 2 Rn, we 
hoose B0 :=fbk 2 �B�g1k=1 su
h that B0 = �B�.A

ording to Evans' result in 1983, we 
an �nd 
lassi
al solutions uN 2C(
) \ C2(
) of8<: maxk=1;:::;N n�tra
e(AkD2u) + hbk; Duio = f in B1;u = 0 on �B1: (7:9)Moreover, we �nd � = �(") 2 (0; 1), C" > 0 (for ea
h " 2 (0; 1)) and C1 > 0,whi
h are independent of N � 1, su
h thatkuNkL1(B1) � C1kfkLn(B1) and kuNkC2;�(B1�") � C": (7:10)Note that the �rst estimate of (7.10) is valid by Proposition 6.2 when theinhomogeneous term is 
ontinuous.More pre
isely, by the 
lassi
al 
omparison prin
iple, Proposition 3.3, wehave uN � u1 in B1: (7:11)Furthermore, we 
an 
onstru
t a subsoluion of (7.9) for any N � 1 inthe following manner: Fix z 2 �B1. Set vz(x) := �(e��jx�2zj2 � e��), where�; � > 0 (independent of z 2 �B1) will be 
hosen later. We �rst note thatvz(z) = 0 and vz(x) � 0 for x 2 B1.Setting Lkw(x) := �tra
e(AkD2w(x)) + hbk; Dw(x)i, we verify thatLkvz(x) � 2��e��jx�2zj2(�n� 2��jx� 2zj2 + �jx� 2zj)� 2��e�9�(�n� 2��+ 3�):Thus, �xing � := (�n+3�+1)=(2�), we have Lkvz(x) � �2��e�9�. Hen
e,taking � > 0 large enough so that 2��e�9� � kfkL1(B1), we havemaxk=1;2;:::;N Lkvz(x) � f(x) in B1:Now, putting V (x) := supz2�B1 vz(x), in view of Theorem 4.2, we see thatV is a vis
osity subsolution ofmaxk=1;2;:::;N Lku(x)� f(x) � 0 in B1:105



Moreover, it is easy to 
he
k that V �(x) = 0 for x 2 �B1. Thus, by Proposi-tion 3.3 again, we obtain thatV � uN in B1: (7:12)Therefore, in view of (7.10)-(7.12), we 
an 
hoose a sequen
e Nk andu 2 C2(B1) su
h that limk!1Nk =1,(uNk; DuNk ; D2uNk)! (u;Du;D2u) uniformly in B1�"for ea
h " 2 (0; 1), and V � u � u1 in B1: (7:13)We note that (7.13) implies that u� = u� on �B1.By virtue of the stability result (Proposition 4.8), we see that u is avis
osity solution of P+(D2u) + �jDuj � f = 0 in B1sin
e supk�1f�tra
e(AkX) + hbk; pig = P+(X) + �jpj. Hen
e, Theorem 3.9yields u 2 C(B1).Therefore, by Proposition 2.3, we see that u 2 C(B1) \ C2(B1) is a
lassi
al solution of (7.8).Step 2: f 2 Lp(B1). (Lemma 3.1 in [5℄) Choose fk 2 C1(B1) su
h thatkfk � fkLp(
) ! 0 as k !1.Let uk 2 C(B1) \ C2(B1) be a 
lassi
al solution ofP+(D2u) + �jDuj � fk = 0 in B1su
h that uk = 0 on �B1. Proposition 6.2 implies that �Ckf�k kLn(B1) � uk �Ckf+k kLp(B1) in B1.We �rst 
laim that fukg1k=1 is a Cau
hy sequen
e in L1(B1). Indeed,sin
e (1) and (4) of Proposition 3.2 imply thatP�(D2(uj � uk))� �jD(uj � uk)j� P+(D2uj) + P�(�D2uk) + �jDujj � �jDukj= fj � fk� P+(D2uj)� P+(D2uk) + �jD(uj � uk)j� P+(D2(uj � uk)) + �jD(uj � uk)j;106



using Proposition 6.2 when the inhomogeneous term is 
ontinuous, wehave maxB1 juj � ukj � Ckfj � fkkLn(B1):Re
alling p � n, we thus havekuj � ukkL1(B1) � Ckfj � fkkLp(B1):Hen
e, we �nd u 2 C(B1) su
h that uk 
onverges to u uniformly in B1 ask !1. Moreover, we see that �Ckf�kLp(B1) � u � Ckf+kLp(B1) in B1.Therefore, by the standard 
overing and limiting arguments with weakly
onvergen
e in W 2;p lo
ally, it suÆ
es to �nd C > 0, independent of k � 1,su
h that kukkW 2;p(B1=2) � C:Moreover, we see that �Ckf�kLp(B1) � u � Ckf+kLp(B1) in B1.For " 2 (0; 1=2), we sele
t � := �" 2 C2(B1) su
h that8>>><>>>: (i) 0 � � � 1 in B1;(ii) � = 0 in B1 nB1�";(iii) � = 1 in B1�2";(iv) jD�j � C0"�1; jD2�j � C0"�2 in B1;where C0 > 0 is independent of " 2 (0; 1=2).Now, we re
all Ca�arelli's result (1989) (see also [4℄): There is a universal
onstant Ĉ > 0 su
h thatkD2(�uk)kLp(B1�") � ĈkP+(D2(�uk))kLp(B1�"):Hen
e, we �nd C1 > 0 su
h that for 0 < " < 1=4,kD2ukkLp(B1�2") � kD2(�uk)kLp(B1�") � ĈkP+(D2(�uk))kLp(B3=4)� C1 �kfkkLp(B1�") + "�1kDukkLp(B1�") + "�2kukkLp(B1�")�Multiplying "2 > 0 in the above, we get"2kD2ukkLp(B1�2") � C1(kfkkLp(B1) + �1(uk) + �0(uk));where �j(uk) := sup0<"<1=2 "jkDjukkLp(B1�") for j = 0; 1; 2.107



Therefore, in view of the \interpolation" inequality (see [13℄ for example),i:e: for any Æ > 0, there is CÆ > 0 su
h that�1(uk) � Æ�2(uk) + CÆ�0(uk);we �nd C3 > 0 su
h that�2(uk) � C3 �kfkkLp(B1) + �0(uk)� :On the other hand, sin
e we have L1-estimates for uk, we 
on
lude theproof. 2Remark. It is possible to show that the uniform limit u in Step 2 isan Lp-vis
osity solution of (7.8) by Proposition 6.13. Moreover, sin
e it isknown that if Lp-vis
osity supersolution of (7.8) belongs to W 2;plo
 (B1), thenit is an Lp-strong supersolution (see [5℄), u satis�es P+(D2u)+�jDuj = f(x)a:e: in B1.7.4 Proof of the weak Harna
k inequalityWe need a modi�
ation of Lemma 4.1 in [4℄ sin
e our PDE (7.14) below hasthe �rst derivative term.Lemma 7.6. (
f. Lemma 4.1 in [4℄) There are � 2 C2(B2pn) and� 2 C(B2pn) su
h that8>>><>>>: (1) P�(D2�)� �jD�j � �� in B2pn;(2) �(x) � �2 for x 2 Q3;(3) �(x) = 0 for x 2 �B2pn;(4) �(x) = 0 for x 2 B2pn nB1=2:Proof. Set �0(r) := Af1� (2pn=r)�g for A; � > 0 so that �0(2pn) = 0.Sin
e ( D�0(jxj) = A(2pn)��jxj���2x;D2�0(jxj) = A(2pn)��jxj���4fjxj2I � (� + 2)x
 xg;we 
alu
ulate in the following way: At x 6= 0, we haveP�(D2�0(jxj))� �jD�0(jxj)j � A(2pn)��jxj���2f(�+ 2)�� n�� �jxjg:108



Fig 7.1
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Setting � := ��1(n� + 2�pn) � 2 so that � > 0 for n � 2, we see thatthe right hand side of the above is nonnegative for x 2 B2pn n f0g. Thus,taking � 2 C2(B2pn) su
h that �(x) = �0(jxj) for x 2 B2pn n B1=2 and�(x) � �0(3pn=2) for x 2 B3pn=2, we 
an 
hoose a 
ontinuous fun
tion �satisfying (1) and (4). See Fig 7.1.Moreover, taking A := 2=f(4=3)� � 1g so that �0(3pn=2) = �2, we seethat (2) holds. 2We now present an important \
ube de
omposition lemma".We shall explain a terminology for the lemma: For a 
ube ~Q := Qr(x) withr > 0 and x 2 Rn, we 
all Q a dyadi
 
ube of ~Q if it is one of 
ubes fQkg2nk=1so that Qk := Qr=2(xk) for some xk 2 ~Q, and [2nk=1Qk � ~Q � [2nk=1Qk.Lemma 7.7. (Lemma 4.2 in [4℄) Let A � B � Q1 be measurable setsand 0 < Æ < 1 su
h that(a) jAj � Æ;(b) Assume that if a dyadi
 
ube Q of ~Q � Q1 satis�es jA \Qj > ÆjQj;then ~Q � B.Then, jAj � ÆjBj.Proof of Proposition 6.4. Assuming that u 2 C(B2pn) is a nonnegative109



vis
osity supersolution ofP+(D2u) + �jDuj � 0 in B2pn; (7:14)we shall show that for some 
onstants p0 > 0 and C1 > 0,kukLp0(Q1) � C1 infQ1=2 u:To this end, it is suÆ
ient to show that if u 2 C(B2pn) satis�es thatinfQ1=2 u � 1, then we have kukLp0(Q1) � C1 for some 
onstants p0; C1 > 0.Indeed, by taking v(x) := u(x) �infQ1=2 u+ Æ��1 for any Æ > 0 in pla
e of u,we have kvkLp0(Q1) � C1, whi
h implies the assertion by sending Æ ! 0.Lemma 7.8. There are � > 0 and M > 1 su
h that if u 2 C(B2pn) is anonnegative Lp-vis
osity supersolution of (7:14) su
h thatinfQ3 u � 1; (7:15)then we have jfx 2 Q1 j u(x) �Mgj � �:Remark. In our setting of proof of Proposition 7.4, assumption (7.15) isautomati
ally satis�ed.Proof of Lemma 7.8. Choose � 2 C2(B2pn) and � 2 C(B2pn) from Lemma7.6. Using (4) of Proposition 3.2, we easily see that w := u + � is an Ln-vis
osity supersolution ofP+(D2w) + �jDwj � �� in B2pn:Sin
e infQ3 w � �1 and w � 0 on �B2pn by (2) and (3) in Lemma 7.6,respe
tively, by Proposition 6.2, we �nd Ĉ > 0 su
h that1 � supQ3 (�w) � supB2pn(�w) � Ĉk�kLn(�[�w;B2pn℄\B+2pn[�w℄): (7:16)In view of (4) of Lemma 7.6, (7.16) implies that1 � ĈmaxB1=2 j�jjfx 2 Q1 j (u+ �)(x) < 0gj:110



Sin
e u(x) � ��(x) � maxB2pn(��) =:M for x 2 B2pn:Therefore, setting � = (Ĉ supQ1 j�j)�1 > 0 and M = supB2pn(��) � 2, wehave � � jfx 2 Q1 j u(x) �Mgj: 2We next show the following:Lemma 7.9. Under the same assumptions as in Lemma 7.8, we havejfx 2 Q1 j u(x) > Mkgj � (1� �)k for all k = 1; 2; : : :Proof. Lemma 7.8 yields the assertion for k = 1.Suppose that it holds for k � 1. Setting A := fx 2 Q1 j u(x) > Mkg andB := fx 2 Q1 j u(x) > Mk�1g, we shall show jAj � (1� �)jBj.Sin
e A � B � Q1 and jAj � jfx 2 Q1 j u(x) > Mgj � Æ := 1 � �, inview of Lemma 7.8, it is enough to 
he
k that property (b) in Lemma 7.7holds.To this end, let Q := Q1=2j (z) be a dyadi
 
ube of ~Q := Q1=2j�1(ẑ) (forsome z; ẑ 2 Q1 and j � 1) su
h thatjA \Qj > ÆjQj = 1� �2jn : (7:17)It remains to show ~Q � B.Assuming that there is ~x 2 ~Q su
h that ~x =2 B; i:e: u(~x) �Mk�1.Set v(x) := u(z + 2�jx)=Mk�1 for x 2 B2pn. Sin
e j~xi � zij � 3=2j+1, wesee that infQ3 v � u(~x)=Mk�1 � 1. Furthermore, sin
e z 2 Q1, z + 2�jx 2B2pn for x 2 B2pn.Thus, sin
e v is an Lp-vis
osity supersolution ofP+(D2v) + �jDvj � 0;Lemma 7.8 yields jfx 2 Q1 j v(x) �Mgj � �. Therefore, we havejfx 2 Q j u(x) �Mkgj � �2jn = �jQj:111



Fig 7.2
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Thus, we have jQ n Aj � �jQj. Hen
e, in view of (7.17), we havejQj = jA \Qj+ jQ n Aj > ÆjQj+ �jQj = jQj;whi
h is a 
ontradi
tion. 2Ba
k to the proof of Proposition 6.4. A dire
t 
onsequen
e of Lemma 7.9is that there are ~C; " > 0 su
h thatjfx 2 Q1 j u(x) � tgj � ~Ct�" for t > 0: (7:18)Indeed, for t > M , we 
hoose an integer k � 1 so that Mk+1 � t > Mk.Thus, we havejfx 2 Q1 j u(x) � tgj � jfx 2 Q1 j u(x) > Mkgj � (1� �)k � ~C0t�";where ~C0 := (1� �)�1 and " := � log(1� �)= logM > 0.Sin
e 1 � M "t�" for 0 < t � M , taking ~C := maxf ~C0;M "g, we obtain(7.18).Now, re
alling Fubini's theorem,ZQ1 up0(x)dx � Zfx2Q1 j u(x)�1g up0(x)dx + 1= p0 Z 11 tp0�1jfx 2 Q1 j u(x) � tgjdt+ 1;(see Lemma 9.7 in [13℄ for instan
e), in view of (7.18), for any p0 2 (0; "), we
an �nd C(p0) > 0 su
h that kukLp0(Q1) � C(p0). 2112



7.5 Proof of the lo
al maximum prin
ipleAlthough our proof is a bit te
hni
al, we give a modi�
ation of Trudinger'sproof in [13℄ (Theorem 9.20), in whi
h he observed a pre
ise estimate for\strong" subsolutions on the upper 
onta
t set. Re
ently, Fok in [11℄ (1996)gave a similar proof to ours.We note that we 
an �nd a di�erent proof of the lo
al maximum prin
iplein [4℄ (Theorem 4.8 (2)).Proof of Proposition 6.5. We give a proof only when q 2 (0; 1℄ be
ause itis immediate to show the assertion for q > 1 by H�older's inequality.Let x0 2 Q1 be su
h that maxQ1 u = u(x0). It is suÆ
ient to show thatmaxB1=4(x0) u � C2ku+kLq(B1=2(x0))sin
e B1=2(x0) � Q2. Thus, by 
onsidering u((x� x0)=2) instead of u(x), itis enough to �nd C2 > 0 su
h thatmaxB1=2 u � C2ku+kLq(B1):We may suppose that maxB1 u > 0 (7:19)sin
e otherwise, the 
on
lusion is trivial.Furthermore, by the 
ontinuity of u, we 
an 
hoose � 2 (0; 1=4) su
h that1� 2� � 1=2 and maxB1�2� u > 0:We shall 
onsider the sup-
onvolution of u again: For " 2 (0; �),u"(x) := supy2B1 (u(y)� jx� yj22" ) :By the uniform 
onvergen
e of u" to u, (7.19) yieldsmaxB1�� u" > 0 for small " > 0: (7:20)For small " > 0, we 
an 
hoose Æ := Æ(") 2 (0; �) su
h that lim"!0 Æ = 0,and P�(D2u")� �jDu"j � 0 a:e: in B1�Æ:113



Putting �"(x) := f(1� Æ)2 � jxj2g� for � := 2n=q � 2, we de�ne v"(x) :=�"(x)u"(x). We note that r" := maxB1�Æ v" > 0:Fix r 2 (0; r") and set �"r := �r[v"; B1�Æ℄. By (1) in Lemma 7.5, we see�"r � B+1�Æ[v"℄.For later 
onvenien
e, we observe thatDv"(x) = �2�x�(x)(��1)=�u"(x) + �(x)Du"(x); (7:21)D2v"(x) = �2��(x)(��1)=�fu"(x)I + x
Du"(x) +Du"(x)
 xg+4�(� � 1)�(x)(��2)=�u"(x)x
 x + �(x)D2u"(x): (7:22)Sin
e u" is twi
e di�erentiable almost everywhere, we 
an 
hoose a mea-surable set N" � B1�Æ su
h that jN"j = 0 and u" is twi
e di�erentiable atx 2 B1�Æ nN". Of 
ourse, v" is also twi
e di�erentiable at x 2 B1�Æ nN".By (7.22), we haveP�(D2v") � �P�(D2u") + 2��(��1)=�f�nu" � P�(x
Du" +Du" 
 x)gin B+1�Æ[v"℄. By using (7.21), the last term in the above 
an be estimatedfrom above by Cf��2=�(v")+ + ��1=�jDv"jg:Moreover, using (7.21) again, we haveP�(D2u") � �jDu"j � ���1jDv"j+ C��1=�(u")+:Hen
e, we �nd C > 0 su
h thatP�(D2v") � C��1=�jDv"j+ C��2=�(v")+ =: g" in B1�Æ nN": (7:23)We next 
laim that there is C > 0 su
h thatjDv"(x)j � C��1=�(x)v"(x) for x 2 �"r nN": (7:24)First, we note that at x 2 �"r n N", v"(y) � v"(x) + hDv"(x); y � xi fory 2 B1�Æ. 114



To show this 
laim, sin
e we may suppose jDv"(x)j > 0 to get the esti-mate, setting y := x � tDv"(x)jDv"(x)j�1 2 �B1�Æ for t 2 [1 � Æ � jxj; 1 �Æ + jxj℄, we see that 0 = v"(y) � v"(x)� tjDv"(x)j;whi
h implies jDv"(x)j � Cv"(x)��1=�(x) in �"r nN": (7:25)Here, we use Lemma 2.8 in [5℄, whi
h will be proved in the end of thissubse
tion for the reader's 
onvenien
e:Lemma 7.10. Let w 2 C(
) be twi
e di�erentiable a:e: in 
, and satisfyP�(D2w) � g a:e: in 
;where g 2 Lp(
) with p � n. If �C1I � D2w(x) � O a:e: in 
 for someC1 > 0, then w is an Lp-vis
osity subsolution ofP�(D2w) � g in 
: (7:26)Sin
e u" is Lips
hitz 
ontinuous in B1�Æ, by (7.22), we see that v" is anLn-vis
osity subsolution ofP�(D2v") � g" in B1�Æ:Noting (7.25), in view of Proposition 6.2, we havemaxB1�Æ v" � Ck��2=�(v")+kLn(�"r)� C  maxB1�Æ (v")+!��2� k((u")+)2=�kLn(B1�Æ);whi
h together with our 
hoi
e of � yieldsmaxB1�Æ v" � Ck(u")+kLq(B1�Æ):Therefore, by (7.20), we havemaxB1=2 u" � CmaxB1�Æ v" � Ck(u")+kLq(B1�Æ);115



Therefore, sending "! 0 in the above, we �nish the proof. 2Proof of Lemma 7.10. In order to show that w 2 C(
) is an Lp-vis
ositysubsolution of (7.26), we suppose the 
ontrary; there are "; r > 0, x̂ 2 
 and� 2 W 2;plo
 (
) su
h that 0 = (w � �)(x̂) = max
(w � �), B2r(x̂) � 
, andP�(D2�)� g � 2" a:e: in Br(x̂):We may suppose that x̂ = 0 2 
. Setting  (x) := �(x) + � jxj4 for small� > 0, we observe thath := P�(D2 )� g � " a:e: in Br:Noti
e that 0 = (w �  )(0) > (w �  )(x) for x 2 Br n f0g.Moreover, we observeP�(D2(w �  )) � �" a:e: in Br: (7:27)Consider wÆ := w � �Æ, where �Æ is the standard molli�er for Æ > 0. Fromour assumption, we see that, as Æ ! 0,( (1) wÆ ! w uniformly in Br;(2) D2wÆ ! D2w a:e: in Br:By Lusin's Theorem, for any � > 0, we �nd E� � Br su
h that jBr nE�j < �,ZBrnE�(1 + jP�(�D2 )j)pdx < �;and D2wÆ ! D2w uniformly in E� (as Æ ! 0):Setting hÆ := P�(D2(wÆ �  )), we �nd C > 0 su
h thathÆ � C + P�(�D2 )be
ause of our hypothesis. Hen
e, we havek(hÆ)+kpLp(Br) � C ZBrnE�(1 + jP�(�D2 )j)pdx+ ZE� j(hÆ)+jpdx:Sending Æ ! 0 in the above, by (7.27), we havelim supÆ!0 k(hÆ)+kLp(Br) � Ck(1 + jP�(�D2 )j)kLp(BrnE�) � C�: (7:28)116



On the other hand, in view of Proposition 6.2, we see thatmaxBr (wÆ �  ) � max�Br (wÆ �  ) + Ck(hÆ)+kLp(Br):Hen
e, by sending Æ ! 0, this inequality together with (7.28) implies that0 = maxBr (w �  ) � max�Br (w �  ) + C� for any � > 0:This is a 
ontradi
tion sin
e max�Br(w �  ) < 0. 2
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