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Preface

This book was originally written in Japanese for undergraduate students
in the Department of Mathematics of Saitama University. In fact, the first
hand-written draft was prepared for a series of lectures on the viscosity so-
lution theory for undergraduate students in Ehime University and Hokkaido
University.

The aim here is to present a brief introduction to the theory of viscosity
solutions for students who have knowledge on Advanced Calculus (i.e. differ-
entiation and integration on functions of several-variables) and hopefully, a
little on Lebesgue Integration and Functional Analysis. Since this is written
for undergraduate students who are not necessarily excellent, I try to give
“easy” proofs throughout this book. Thus, if you do not feel any difficulty
to read User’s guide [6], you should try to read that one.

I also try not only to show the viscosity solution theory but also to men-
tion some related “classical” results.

Our plan of this book is as follows: We begin with our motivation in
section 1. Section 2 introduces the definition of viscosity solutions and their
properties. In section 3, we first show “classical” comparison principles and
then, extend them to viscosity solutions of first- and second-order PDEs,
separately. We establish two kinds of existence results via Perron’s method
and representation formulas for Bellman and Isaacs equations in section 4.

We discuss boundary value problems for viscosity solutions in sections 5.
Section 6 is a short introduction to the LP-viscosity solution theory, on which
we have an excellent book [4].

In Appendix, which is the hardest part, we give proofs of fundamental
propositions.

In order to learn more on viscosity solutions, I give a list of “books”:

A popular survey paper [6] by Crandall-Ishii-Lions on the theory of viscos-
ity solutions of second-order, degenerate elliptic PDEs is still a good choice
for undergraduate students to learn first. However, to my experience, it
seems a bit hard for average undergraduate students to understand.

Bardi-Capuzzo Dolcetta’s book [1] contains lots of information on viscos-
ity solutions for first-order PDEs (Hamilton-Jacobi equations) while Fleming-
Soner’s [10] complements topics on second-order (degenerate) elliptic PDEs
with applications in stochastic control problems.

Barles’ book [2] is also nice to learn his original techniques and French
language simultaneously !
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It has been informed that Ishii would write a book [15] in Japanese on
viscosity solutions in the near future, which must be more advanced than
this.

For an important application via the viscosity solution theory, we refer
to Giga’s [12] on curvature flow equations. Also, I recommend the reader to
consult Lecture Notes [3] (Bardi-Crandall-Evans-Soner-Souganidis) not only
for various applications but also for a “friendly” introduction by Crandall,
who first introduced the notion of viscosity solutions with P.-L. Lions in early
80s.

If the reader is interested in section 6, I recommend him/her to attack
Caffarelli-Cabré’s [4].

As a general PDE theory, although there are so many books on PDEs, 1
only refer to my favorite ones; Gilbarg-Trudinger’s [13] and Evans’ [8]. Also
as a textbook for undergraduate students, Han-Lin’s short lecture notes [14]
is a good choice.

Since this is a text-book, we do not refer the reader to original papers
unless those are not mentioned in the books in our references.

Acknowledgment

First of all, I would like to express my thanks to Professors H. Morimoto
and Y. Tonegawa for giving me the opportunity to have a series of lectures in
their universities. T would also like to thank Professors K. Ishii, T. Nagasawa,
and a graduate student, K. Nakagawa, for their suggestions on the first draft.

I wish to express my gratitude to Professor H. Ishii for having given me
enormous supply of ideas since 1980.

I also wish to thank the reviewer for several important suggestions.

My final thanks go to Professor T. Ozawa for recommending me to publish
this manuscript. He kindly suggested me to change the original Japanese title
(“A secret club on viscosity solutions”).

il



Preface for the 2nd edition

Although I corrected many errors in the first version, there must be some
mistakes in this version. I would be glad if the reader would kindly inform
me errors and typos etc.

I would like to thank T. Imai, H. Ishii, K. Ishii, K. Kohsaka, H. Mitake, T.
Nagasawa, S. Nakagawa, T. Nozokido, M. Ohta, and T. Ohtsuka for pointing
out numerous errors in the first edition.

9 May 2013 Shigeaki Koike

iv



Contents

Introduction 1
1.1 From classical solutions to weak solutions 2
1.2 Typical examples of weak solutions 4
1.2.1  Burgers’ equation 4
1.2.2  Hamilton-Jacobi equation 6

Definition 9
2.1 Vanishing viscosity method 9
2.2 Equivalent definitions 17

Comparison principle 23
3.1 Classical comparison principle 24
3.1.1  Degenerate elliptic PDEs 24
3.1.2  Uniformly elliptic PDEs 24
3.2 Comparison principle for first-order PDEs 26
3.3 Extension to second-order PDEs 31
3.3.1  Degenerate elliptic PDEs 33
3.3.2  Remarks on the structure condition 35
3.3.3  Uniformly elliptic PDEs 38

Existence results 40
4.1 Perron’s method 40
4.2 Representation formulas 45
4.2.1  Bellman equation 46
4.2.2  Isaacs equation ol
4.3 Stability 58

Generalized boundary value problems 62
5.1 Dirichlet problem 65
5.2 State constraint problem 68
5.3 Neumann problem 72
5.4 Growth condition at |z| — oo 75




LP-viscosity solutions 78
6.1 A brief history 78
6.2 Definition and basic facts 81
6.3 Harnack inequality 84
6.3.1  Linear growth 85
6.3.2  Quadratic growth 87
6.4 Holder continuity estimates 89
6.5 Existence result 92

Appendix 95
7.1 Proof of Ishii’s lemma 95
7.2 Proof of the ABP maximum principle 100
7.3 Proof of existence results for Pucci equations 105
7.4 Proof of the weak Harnack inequlity 108
7.5 Proof of the local maximum principle 113

References 118

Notation Index 120

Index 121

vi



1 Introduction
Throughout this book, we will work in Q (except in sections 4.2 and 5.4),
where

2 C R" is open and bounded.

We denote by (-,-) the standard inner product in R", and set |z| =

(z,z) for v € R". We use the standard notion of open balls: For r > 0
and r € R",

By(z):={yeR" | |z —y|<r}, and B,:= B,.(0).

For a function u : 2 — R, we denote its gradient and Hessian matrix at
x € €, respectively, by

ou(z)
or1
Du(z):=| + [,
ou(z)
OTn
0%u(x) ) 9%u(x)
023 J-th B210zn
D*u(z) := i ... Qu()
( ) i-th O0x;0x;
Pu@) L P
OrnOx1 oz

Also, S™ denotes the set of all real-valued n x n symmetric matrices. Note
that if u € C?(Q), then D?*u(zx) € S" for x € Q.
We recall the standard ordering in S™:

X <Y <« (X¢(¢) <(Y&§) for V€ € R™.

We will also use the following notion in sections 6 and 7: For & =!
(&, o8, n ="(n,...,mm) € R", we denote by £ ® n the n X n matrix
whose (7, 7)-entry is &n; for 1 <i,j < n;

S&im - gth s Gy
€ ® n= i-th s 527’]3
[ TR Y



We are concerned with general second-order partial differential equations
(PDEs for short):

F(z,u(z), Du(x), D*u(x)) =0 in Q. (1.1)
We suppose (except in several sections) that
F:OxRxR"xS"— R is continuous

with respect to all variables.

1.1 From classical solutions to weak solutions

As the first example of PDEs, we present the Laplace equation:
—Au=0 1in €. (1.2)

Here, we define Au := trace(D?u). In the literature of the viscosity solution
theory, we prefer to have the minus sign in front of A.

Of course, since we do not require any boundary condition yet, all poly-
nomials of degree one are solutions of (1.2). In many textbooks (particularly
those for engineers), under certain boundary condition, we learn how to solve
(1.2) when ©Q has some special shapes such as cubes, balls, the half-space or
the whole space R". Here, “solve” means that we find an explicit formula, of
u using elementary functions such as polynomials, trigonometric ones, etc.

However, the study on (1.2) in such special domains is not applicable
because, for instance, solutions of equation (1.2) represent the density of a
gas in a bottle, which is neither a ball nor a cube.

Unfortunately, in general domains, it seems impossible to find formulas for
solutions u with elementary functions. Moreover, in order to cover problems
arising in physics, engineering and finance, we will have to study more general
and complicated PDEs than (1.2). Thus, we have to deal with general PDEs
(1.1) in general domains.

If we give up having formulas for solutions of (1.1), how do we investigate
PDEs (1.1) 7 In other words, what is the right question in the study of PDEs
o

In the literature of the PDE theory, the most basic questions are as fol-
lows:



(1) Existence:  Does there exist a solution ?
(2) Uniqueness: Is it the only solution ?
(3) Stability: If the PDE changes a little,
does the solution change a little ?

The importance of the existence of solutions is trivial since, otherwise,
the study on the PDE could be useless.

To explain the significance of the uniqueness of solutions, let us remem-
ber the reason why we study the PDE. Usually, we discuss PDEs or their
solutions to understand some specific phenomena in nature, engineerings or
economics etc. Particularly, people working in applications want to know
how the solution looks like, moves, behaves etc. For this purpose, it might
be powerful to use numerical computations. However, numerical analysis
only shows us an “approximate” shapes, movements, etc. Thus, if there
are more than one solution, we do not know which is approximated by the
numerical solution.

Also, if the stability of solutions fails, we could not predict what will hap-
pen from the numerical experiments even though the uniqueness of solutions
holds true.

Now, let us come back to the most essential question:

What is the “solution” of a PDE ?

For example, it is natural to call a function u : & — R a solution of
(1.1) if there exist the first and second derivatives, Du(x) and D?u(z), for
all z € Q, and (1.1) is satisfied at each x € Q when we plug them in the left
hand side of (1.1). Such a function u will be called a classical solution of
(1.1).

However, unfortunately, it is difficult to seek for a classical solution be-
cause we have to verify that it is sufficiently differentiable and that it satisfies
the equality (1.1) simultaneously.

Instead of finding a classical solution directly, we have decided to choose
the following strategy:

(A) Find a candidate of the classical solution,
(B) Check the differentiability of the candidate.

In the standard books, the candidate of a classical solution is called a
weak solution; if the weak solution has the first and second derivatives, then



it becomes a classical solution. In the literature, showing the differentiability
of solutions is called the study on the regularity of those.

Thus, with these terminologies, we may rewrite the above with mathe-
matical terms:

(A) Existence of weak solutions,
(B) Regularity of weak solutions.

However, when we cannot expect classical solutions of a PDE to exist,
what is the right candidate of solutions ?

We will call a function the candidate of solutions of a PDE if it is a
“unique” and “stable” weak solution under a suitable setting. In section 2,
we will define such a candidate named “viscosity solutions” for a large class
of PDEs, and in the proceeding sections, we will extend the definition to
more general (possibly discontinuous) functions and PDEs.

In the next subsection, we show a brief history on “weak solutions” to
remind what was known before the birth of viscosity solutions.

1.2 Typical examples of weak solutions

In this subsection, we give two typical examples of PDEs to derive two kinds
of weak solutions which are unique and stable.

1.2.1 Burgers’ equation

We consider Burgers’ equation, which is a model PDE in Fluid Mechanics:

ou  10(u?) :
E+§ pe =0 in R x (0,00) (1.3)
under the initial condition:
u(z,0) = g(z) forx eR, (1.4)

where ¢ is a given function.

In general, we cannot find classical solutions of (1.3)-(1.4) even if g is
smooth enough. See [8] for instance.

In order to look for the appropriate notion of weak solutions, we first
introduce a function space C} (R x [0,00)) as a “test function space”:

Cy(R x [0,00)) := { 6 € CL(R x [0, 0)) there is K > 0 such that }

Supp ¢ C [_Ka K] X [OJK]

4



Here and later, we denote by supp ¢ the following set:

supp ¢ := {(z,1) € R x [0,00) | ¢(z,1) # 0}.

Suppose that u satisfies (1.3). Multiplying (1.3) by ¢ € Cj (R x [0,0))
and then, using integration by parts, we have

< (0 20
/R/O (ua—qt5 + %a—i> (x,t)dtdr + /Ru(a:, 0)é(z,0)dx = 0.

Since there are no derivatives of u in the above, this equality makes sense if
u € UgsoL'((—K, K) x (0, K)). Hence, we may adapt the following property
as the definition of weak solutions of (1.3)-(1.4).

(9 20
/R/O (ua—qt5 + %%) (x, t)dtdr + /Rg(:c)qﬁ(a:, 0)dz =0

for all ¢ € Cj(R x [0,00)).

We often call this a weak solution in the distribution sense. As you no-
ticed, we derive this notion by an essential use of integration by parts. We
say that a PDE is in divergence form when we can adapt the notion of
weak solutions in the distribution sense. When the PDE is not in divergence
form, we say that it is in nondivergence form.

We note that the solution of (1.3) may have singularities even though the
initial value g belongs to C'*° by an observation via “characteristic method”.
From the definition of weak solutions, we can derive the so-called Rankine-
Hugoniot condition on the set of singularities.

On the other hand, unfortunately, we cannot show the uniqueness of weak
solutions of (1.3)-(1.4) in general while we know the famous Lax-Oleinik
formula (see [8] for instance), which is the “expected” solution.

In order to obtain the uniqueness of weak solutions, for the definition, we
add the following property (called “entropy condition”) which holds for the
expected solution given by the Lax-Oleinik formula: There is C' > 0 such
that

C
u(x + 2z, t) —u(x,t) < TZ
for all (z,t,2) € R x (0,00) x (0,00). We call u an entropy solution of (1.3)
if it is a weak solution satisfying this inequality. It is also known that such

a weak solution has a certain stability property.
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We note that this entropy solution satisfies the above mentioned impor-
tant properties; “existence, uniqueness and stability”. Thus, it must be a
right definition for weak solutions of (1.3)-(1.4).

1.2.2 Hamilton-Jacobi equations

Next, we shall consider general Hamilton-Jacobi equations, which arise in
Optimal Control and Classical Mechanics:
ou , n
i + H(Du) =0 in (z,t) € R" x (0,00) (1.5)
under the same initial condition (1.4).
In this example, we suppose that H : R" — R is convex, i.e.

H(Bp+ (1~ 0)q) < 0F(p) + (1~ 6)H(g) (1.6
for all p,g € R",0 € [0, 1].

Remark. Since a convex function is locally Lipschitz continuous in general,
we do not need to assume the continuity of H.

Example. In Classical Mechanics, we often call this H a “Hamiltonian”.

As a simple example of H, we have H(p) = |p|*.

Notice that we cannot adapt the weak solution in the distribution sense
for (1.5) since we cannot use the integration by parts.

We next introduce the Lagrangian L : R" — R defined by

L(q) = sup {{p,q) — H(p)}.

peER™

When H(p) = |p|?, it is easy to verify that the maximum is attained in the
right hand side of the above.

It is surprising that we have a neat formula for the expected solution
(called Hopf-Lax formula) presented by

u(z,t) = min {tL <xt;y> + g(y)} (1.7)

yeR™

More precisely, it is shown that the right hand side of (1.7) is differentiable
and satisfies (1.5) almost everywhere.



Thus, we could call u a weak solution of (1.5)-(1.4) when u satisfies (1.5)
almost everywhere. However, if we decide to use this notion as a weak solu-
tion, the uniqueness of those fails in general. We will see an example in the
next section.

As was shown for Burgers’ equation, in order to say that the “unique
weak” solution is given by (1.7), we have to add one more property for the
definition of weak solutions: There is C' > 0 such that

u(z + 2,t) — 2u(z,t) +u(z — 2,t) < Oz)? (1.8)

for all z,z € R,t > 0. This is called the “semi-concavity” of u.

We note that (1.8) is a hypothesis on the one-sided bound of second
derivatives of functions wu.

In 60s, Kruzkov showed that the limit function of approximate solutions
by the vanishing viscosity method (see the next section) has this property
(1.8) when H is convex. He named u a “generalized” solution of (1.5) when
it satisfies (1.5) almost everywhere and (1.8).

To my knowledge, between Kruzkov’s works and the birth of viscosity
solutions, there had been no big progress in the study of first-order PDEs in
nondivergence form.

Remark. The convexity (1.6) is a natural hypothesis when we consider
only optimal control problems where one person intends to minimize some
“costs” (“energy” in terms of Physics). However, when we treat game prob-
lems (one person wants to minimize costs while the other tries to maximize
them), we meet non-convex and non-concave (i.e. “fully nonlinear”)

Hamiltonians. See section 4.2.

In this book, since we are concerned with viscosity solutions of PDEs in
nondivergence form, for which the integration by parts argument cannot be
used to define the notion of weak solutions in the distribution sense, we shall
give typical examples of such PDEs.

Example. (Bellman and Isaacs equations)

We first give Bellman equations and Isaacs equations, which arise in
(stochastic) optimal control problems and differential games, respectively.
As will be seen, those are extensions of linear PDEs.

Let A and B be sets of parameters. For instance, we suppose A and B
are (compact) subsets in R™ (for some m > 1). Fora € A, b€ B, xz € Q,
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reR,p=p1,....,pn) € R", and X = (X;;) € S™, we set
L4(erp, X) = —trace(A(r,a)X) + (g(r,0).p) + cla, ),

L (z,r,p, X) = —trace(A(z,a,b)X) + (g(z,a,b),p) + c(x,a,b)r.
Here A(-,a), A(-,a,b),9(-,a),g(-,a,b),c(-,a) and ¢(-, a, b) are given functions
for (a,b) € A x B.

For inhomogeneous terms, we consider functions f(-,a) and f(-,a,b) in Q
fora € Aand b € B.
We call the following PDEs Bellman equations:

ilelg{L“(x,u(:r), Du(z), D*u(x)) — f(z,a)} =0 for x € Q. (1.9)

Notice that the supremum over A is taken at each point x € (2.
Taking account of one more parameter set B, we call the following PDEs
Isaacs equations:

sup inf { L (z, u(z), Du(x), D*u(z)) — f(z,a,0)} =0 forz € Q (1.10)

acA beB

and

gg}f; igg{La’b(:r,u(x),Du(:r), D*u(x)) — f(z,a,b)} =0 forz € Q. (1.10')

Example. (“Quasi-linear” equations)

We say that a PDE is quasi-linear if the coefficients of D?u contains u
or Du. Although we will not study quasilinear PDEs in this book, we give
some of those which are in nondivergence form.

We first give the PDE of mean curvature type:

F(z,p, X) == — (|p|*trace(X) — (Xp,p)) .
Notice that this F' is independent of z-variables. We refer to [12] for appli-

cations where this kind of operators appears.

Next, we show a relatively “new” one called L*°-Laplacian:

F(z,p, X) :== —(Xp,p).

Again, this F' does not contain z-variables. We refer to Jensen’s work [16],
where he first studied the PDE “—(D?uDu, Du) = 0 in ©” via the viscosity
solution approach.



2 Definition

In this section, we derive the definition of viscosity solutions of (1.1) via the
vanishing viscosity method.

We also give some basic properties of viscosity solutions and equivalent
definitions using “semi-jets”.

2.1 Vanishing viscosity method

When the notion of viscosity solutions was born, in order to explain the
reason why we need it, many speakers started in their talks by giving the
following typical example called the eikonal equation:

|Dul*=1 in Q. (2.1)
We seek C'! functions satisfying (2.1) under the Dirichlet condition:

u(z) =0 for x € 00. (2.2)

However, since there is no classical solution of (2.1)-(2.2) (showing the non-
existence of classical solutions is a good exercise), we intend to derive a
reasonable definition of weak solutions of (2.1).

In fact, we expect that the following function (the distance from 0)
would be the unique solution of this problem (see Fig 2.1):

u(z) = dist(x, 00) := inf |z —y|.

yeoN

y A
1
L y=u(z)
. T
-1 0 1
Fig 2.1



If we consider the case when n =1 and Q = (—1,1), then the expected
solution is given by

u(x) =1—|z| forze[-1,1]. (2.3)

Since this function is C'*° except at x = 0, we could decide to call u a weak
solution of (2.1) if it satisfies (2.1) in £ except at finite points.

Y

A

However, even in the above simple case of (2.1), we know that there are
infinitely many such weak solutions of (2.1) (see Fig 2.2); for example, —u is
the weak solution and

z+1 forzel-1,
u(x)=< —x  forze[-1,
x—1 forzel3,1],

2):
), ...ete.

NI

Now, in order to look for an appropriate notion of weak solutions, we
introduce the so-called vanishing viscosity method; for £ > 0, we consider
the following PDE as an approximate equation of (2.1) when n = 1 and
Q=(-1,1):

{ —eu” + (u)? =1 in (—1,1), (2.4)
us(+1) = 0.

The first term, —eu!, in the left hand side of (2.4) is called the vanishing
viscosity term (when n = 1) as ¢ — 0.

By an elementary calculation, we can find a unique smooth function wu,
in the following manner: We first note that if a classical solution of (2.4)

10



exists, then it is unique. Thus, we may suppose that u.(0) = 0 by symmetry.
Setting v. = u., we first solve the ODE:

(2.5)

—evl +v2=1 in(-1,1),
v:(0) = 0.

It is easy to see that the solution of (2.5) is given by

ve(x) = — tanh <§> :

Hence, we can find u. by

cosh (£ S 4e s
u.(x) = —clog <7(i)> = —¢clog (%) :

cosh (g)

It is a good exercise to show that u. converges to the function in (2.3)
uniformly in [—1, 1].

Remark. Since t.(x) :== —u.(z) is the solution of
eu’ + (u)?=1 in (=1,1),
u(+1) =0,
we have 4(z) := lim._,¢ 4.(z) = —u(x). Thus, if we replace —eu" by +eu”,

then the limit function would be different in general.

To define weak solutions, we adapt the properties which hold for the
(uniform) limit of approximate solutions of PDEs with the “minus” vanishing
viscosity term.

Let us come back to general second-order PDEs:

F(z,u, Du, D*u) =0 in . (2.6)

We shall use the following definition of classical solutions:

‘ Definition. ‘ We call v : Q@ — R a classical subsolution (resp.,
supersolution, solution) of (2.6) if u € C?(Q2) and

F(z,u(z), Du(z), D*u(z)) <0 (resp., >0, =0) in €.

11



Remark. If F' does not depend on X-variables (i.e. F/(z,u, Du) = 0; first-
order PDEs), we only suppose u € C''(Q) in the above in place of u € C?().

Throughout this text, we also suppose the following monotonicity condi-
tion with respect to X-variables:

| Definition. | We say that F is (degenerate) elliptic if

{ F(x,r,p,X) < F(x,r,p,Y) (2.7)

forallz € Q,r e R,pe R", X, Y € S” provided X >Y.

We notice that if F' does not depend on X-variables (i.e. FF = 0 is the
first-order PDE), then F' is automatically elliptic.

We also note that the left hand side F'(z,r,p, X) = —trace(X) of the
Laplace equation (1.2) is elliptic.

We will derive properties which hold true for the (uniform) limit (as
e — 40) of solutions of

—eAu+ F(v,u,Du, D*>u) =0 inQ (> 0). (2.8)

Note that since —etrace(X) + F(z,r,p, X) is “uniformly” elliptic (see in
section 3 for the definition) provided that F' is elliptic and F(x,r,p, X) <
C|X| for (z,r,p) € 2 x R x R", it is easier to solve (2.8) than (2.6) in
practice. See [13] for instance.

Proposition 2.1. Assume that F is elliptic. Let u. € C?(2) N C(Q)
be a classical subsolution (resp., supersolution) of (2.8). If u. converges to

u € C(Q) (as e — 0) uniformly in any compact sets K C (0, then, for any
¢ € C*(Q), we have

F(z,u(z), Do(x), D*(x)) <0 (resp., > 0)
provided that u — ¢ attains its maximum (resp., minimum) at x € €.

Remark. When F' does not depend on X-variables, we only need to sup-
pose ¢ and u. to be in C'(Q) as before.

Proof. We only give a proof of the assertion for subsolutions since the
other one can be shown in a symmetric way.
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Suppose that u — ¢ attains its maximum at & € Q for ¢ € C?(Q). Setting
os(y) := ¢(y) + 8|y — &|* for small § > 0, we see that

(u = 5)(2) > (u—ds)(y) fory e Q\{z}.

(This tiny technique to replace a maximum point by a “strict” one will appear
in Proposition 2.2.)

Let 7. € Q be a point such that (u. — ¢;)(z.) = maxg(u. — ¢5). Note
that =, also depends on ¢ > 0.

Since u, converges to u uniformly in B, (%) and Z is the unique maximum
point of u — ¢5, we note that lim,_,ox. = . Thus, we see that x. € € for
small € > 0. Notice that if we argue by ¢ instead of ¢g, the limit of . might
differ from z.

Thus, at z. € (), we have

—eAu.(z.) + F(ze, uc (7. ), Duc(z.), D2U6(378)) <0.

Since D(u. — ¢s)(z.) = 0 and D?(u. — ¢5)(x.) < 0, in view of ellipticity, we
have
_5A¢5(x5) + F(xsa Ue(xs); D¢5(x6)7 D2¢5(x5)) S 0.

Sending ¢ — 0 in the above, we have
F(2,u(%), Dos(2), D?¢5(2)) < 0.

Since Dg;(2) = D¢(z) and D?*¢s(2) = D?¢(z), we conclude the proof. 0O

| Definition. | We call uw : Q — R a viscosity subsolution (resp.,
supersolution) of (2.6) if, for any ¢ € C?(Q),

F(z,u(x), Dé(x), D*¢(x)) <0 (resp., >0)

provided that u — ¢ attains its maximum (resp., minimum) at x € €.
We call u: Q@ — R a viscosity solution of (2.6) if it is both a viscosity
sub- and supersolution of (2.6).

Remark. Here, we have given the definition to “general” functions but
we will often suppose that they are (semi-)continuous in Theorems etc.

In fact, in our propositions in sections 2.1, we will suppose that viscosity
sub- and supersolutions are continuous.

13



However, all the proposition in section 2.1 can be proved by replacing up-
per and lower semi-continuity for viscosity subsolutions and supersolutions,
respectively.

We will introduce general viscosity solutions in section 3.3.

In order to memorize the correct inequality, we will often

say that u is a viscosity subsolution (resp., supersolution) of

F(z,u, Du, D*u) <0 (resp., >0) inQ
if it is a viscosity subsolution (resp., supersolution) of (2.6).

Proposition 2.2. For u: Q — R, the following (1) and (2) are equiva-
lent:

(1) w is a viscosity subsolution (resp., supersolution) of (2.6),
(2) if0=(u—9)(2) > (u—¢)(x) (resp., < (u—9¢)(x))

for p € C*(Q), 2 € Q and z € Q\ {1},

then F (%, ¢(%), Dp(%), D*¢(%)) < 0 (resp., > 0).

graph of ¢5 | graph of ¢

Proof. The implication (1) = (2) is trivial.
For the opposite implication in the subsolution case, suppose that u — ¢
attains a maximum at & € . Set

os(x) = ¢(x) + 0|z — 2|* + (u — @) (2).

14



See Fig 2.3. Since 0 = (u — ¢5)(2) > (u — ¢5)(x) for x € Q\ {2}, (2) gives
F(&,¢5(1), Dbs(2), D*¢5(1)) <0,

which implies the assertion. O

By the next proposition, we recognize that viscosity solutions are right
candidates of weak solutions when F' is elliptic.

Proposition 2.3. Assume that F' is elliptic. A function u : Q@ — R
is a classical subsolution (resp., supersolution) of (2.6) if and only if it is a
viscosity subsolution (resp., supersolution) of (2.6) and u € C*(Q).

Proof. Suppose that u is a viscosity subsolution of (2.6) and u € C?().
Taking ¢ = u, we see that u — ¢ attains its maximum at any points z € €.
Thus, the definition of viscosity subsolutions yields

F(z,u(x), Du(x), D*u(z)) <0 for z € Q.
On the contrary, suppose that u € C?(Q) is a classical subsolution of
(2.6).

Fix any ¢ € C?(Q). Assuming that u — ¢ takes its maximum at = € Q,
we have

D(u—¢)(x) =0 and D?*(u— ¢)(x) <O0.

Hence, in view of ellipticity, we have
0 > F(z,u(z), Du(x), D*u(x)) > F(z,u(z), Do(z), D*¢(z)). O

We introduce the sets of upper and lower semi-continuous functions: For
K cR",

USC(K) :={u: K — R | u is upper semi-continuous in K},
and
LSC(K) :={u: K — R | u is lower semi-continuous in K }.

Remark. Throughout this book, we use the following maximum principle
for semi-continuous functions:
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‘ An upper semi-continuous function in a compact set attains its maximum.

We give the following lemma which will be used without mentioning it.
Since the proof is a bit technical, the reader may skip it over first.

Proposition 2.4. Assume that u € USC(Q) (resp., u € LSC(RQ)) is a viscos-
ity subsolution (resp., supersolution) of (2.6) in 2.

Then, for any open set ' C Q, u is a viscosity subsolution (resp., supersolution)
of (2.6) in Q'.

Proof. We only show the assertion for subsolutions since the other can be shown
similarly.
For ¢ € C?(), by Proposition 2.2, we suppose that for some & € Q/,

0=(u—¢)(&) > (u—¢)(y) forallye\{z}.

For simplicity, we shall suppose Z = 0.
Choose r > 0 such that B, C €. We then choose & € C*(R") (k = 1,2)
such that 0 <&, <1inR" & +6 =1in R,

61 =1 in Br, and 62 =1 inR" \Bgr.
We define 9 = {14 + M, where M = supgu + 1. Since it is easy to verify that

¢ € C?(R"), and 0 = (u — 9)(0) > (u — 2)(z) for z € Q\ {0}, we leave the proof
to the reader. This concludes the proof. O

2.2 Equivalent definitions

We present, equivalent definitions of viscosity solutions. However, since we
will need those in the proof of uniqueness for second-order PDEs,

the reader may postpone this subsection until section 3.3.

First, we introduce “semi”-jets of functions u : 2 — R at x € Q by

uly) < U(lfr) +(p,y — )
J* T u(z) =< (p, X) € R" x " +§<X(y —z),y —x)
t+o(ly —z|?) asyeQ—z
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and

u(y) > U(lfr) +{p.y — )
J*"u(x) =< (p,X) e R" x S" —|—§<X(y —z),y — )
t+o(ly —z]?) asyeQ—zx

Note that J%> u(z) = —=J*>*(—u)(z).
Remark. We do not impose any continuity for u in these definitions.

We recall the notion of “small order 0” in the above: For k& > 1,

f(z) <o(|lz|¥) (resp., >o(|z|F)) asx—0
{ there is w € C([0, 00), [0, 00)) such that w(0) = 0, and
<~

sup T Sw(r resp., >
zeBr{){O} L — (r) ( P eB(o} EE

In the next proposition, we give some basic properties of semi-jets: (1)
is a relation between semi-jets and classical derivatives, and (2) means that
semi-jets are “defined” in dense sets of (2.

Proposition 2.5. For u : {2 — R, we have the following:
(1) If J>Tu(x) N J*>~u(x) # 0, then Du(x) and D*u(z) exist and,

J*u(x) N J? u(z) = {(Du(x), D*u(z))}.

(2) If u €e USC(QY) (resp., u € LSC(2)), then

Q= {x € Q‘ Sy € Q such that J* u(rz) # 0, lim 7, = x}
— 00

<resp., Q= {:1: € Q‘ 3z, € Q such that J* u(xy,) # (Z),kli_)rglo:ck = x}) .

Proof. The proof of (1) is a direct consequence from the definition.

We give a proof of the assertion (2) only for J*T.

Fix z € Q and choose 7 > 0 so that B,(x) C . For ¢ > 0, we can choose
. € B,(2) such that u(z.) — e | — 2" = max 5, (u(y) — 'y — =),
Since |z, — z|* < e(maxg, ,) —u(x)), we see that z. converges to x € B, ()

17



as £ — 0. Thus, we may suppose that z. € B,(x) for small £ > 0. Hence, we
have

1 _
u(y) < u(z:) + g(|y — x| — |z. —x*) forally € B,(x).

It is easy to check that (2(z. — z)/e,2¢7'I) € J>Tu(x.). O

We next introduce a sort of closure of semi-jets:

dz, € Q and E‘(pk,Xk) € JQ’iu(:ck)
72’iu(x) =4 (p,X) eR" x S" such that (zg, u(zg), pr, Xk)
— (z,u(z),p,X) as k — oo

Proposition 2.6. For u : Q — R, the following (1), (2), (3) are equiva-
lent.

(1) w is a viscosity subsolution (resp., supersolution) of (2.6).
(2) Forz € Q and (p,X) € J>Tu(z) (resp., J> u(z)),

we have F(z,u(x),p, X) <0 (resp., >0).
(3) Forxz e Qand (p,X) € 72’+u(:c) (resp., 72’_u(:1:)),

we have F(z,u(z),p, X) <0 (resp., >0).

Proof. Again, we give a proof of the assertion only for subsolutions.

Step 1: (2) = (3). Forz € Qand (p, X) € 72’+u(:1:), we can find (pg, Xi) €
J?>Fu(xy) with o, € Q such that limy (s, u(zs), Pr, Xi) = (7, u(x), p, X)
and

F(l‘kau(l‘k)apkan) S 07

which implies (3) by sending k& — 0.
Step 2: (3) = (1). For ¢ € C?(Q2), suppose also (u—@)(x) = max(u—a).
Thus, the Taylor expansion of ¢ at x gives

u(y) < u(x)+<Dd>(f6),y—x>+%<D2¢(x)(y—x),y—x>+0(lfv—y|2) as y — .

Thus, we have (D¢(z), D2p(z)) € J2+u(z) C T u(x).
Step 3: (1) = (2). For (p,X) € J*"u(z) (z € Q), we can find nonde-
creasing, continuous w : [0,00) — [0, 00) such that w(0) = 0 and

1

u(y) < ul@) +(p,y —2) + 5(X(y =)y —2) + [y — 2wy —zl)  (29)
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as y — z. In fact, by the definition of o, we find wy € C([0, 00), [0, 00)) such
that wp(0) = 0, and

1 1
()2 swp o {ule) ~ule) =y =) = (X =)y~ )

we verify that w(r) := supy,, wo(t) satisfies (2.9).
Now, we define ¢ by

B(y) = (py —7) + 5(X(y = 7).y — ) + (I — ),
where Vi
(1) ::/t (/ Sw(r)dr) ds > £(t).
It is easy to check that

(Dg(x), D*¢(x)) = (p,X) and (u—¢)(x) > (u—¢)(y) forye Q.

Therefore, we conclude the proof. O

Remark. In view of the proof of Step 3, we verify that for x € €,

J¢ € C*(Q2) such that u — ¢
2,4+ _ 2 n n
T* T u(z) = {(D¢(x), D7¢(z)) e R" x 5 attains its maximum at ’

I ulz) = {(Dqﬁ(x),DQd)(x)) cR" x §" ¢ € C?(Q) such that u — ¢ }

attains its minimum at zx

Thus, we intuitively know J*»*u(x) from their graph.

Example. Consider the function v € C([—1,1]) in (2.3). From the graph
below, we may conclude that J>~u(0) = (), and J*>Tu(0) = ({1} x [0,00)) U
({—1} x [0,00)) U ((—1,1) x R). See Fig 2.4.1 and 2.4.2.

We omit how to obtain J*%u(0) of this and the next examples.

We shall examine J?7 for discontinuous functions. For instance, consider
the Heaviside function:

u(z) = 1 forz >0,
"1 0 forx<O.
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We see that J?~u(0) = 0 and J>Tu(0) = ({0} x [0,00)) U ((0,00) x R). See
Fig 2.5.

In order to deal with “boundary value problems” in section 5, we prepare
some notations: For a set K C R", which is not necessarily open, we define
semi-jets of u : K — R at x € K by

(

u(y) < U(iv)+<p,y—fv>
Tt u(a) == { (n,X) € RY x 57 Xy a)—) ,
+o(ly —z*) asye K —»x

u(y) = U(iv) +(p,y — x)
Jg u(z) =1 (p, X) e R" x 5" +5{X(y — ),y — ) :
+o(ly—z’) asye K -z |

and

s Jup € K and I(py, X3) € JaFu(xy)
Jw u(z) =< (p,X) e R" x S" such that (g, u(zk), pr, Xi)
— (z,u(z),p,X) as k — oo

Remark. 1t is obvious to verify that

reQ =  JoFu(z)= Jé’iu(x) and j?)’iu(x) = 7%iu(x).
For = € Q, we shall simply write J2Fu(z) (resp., 7 u(z)) for J>Fu(z) =

J%’iu(:c) (resp, 7?)’iu(:c) = 725iu(:r))

Example. Consider u(z) = 0 in K := [0,1]. It is easy to observe that
J¥tu(z) = Jptu(z) = {0} x [0,00) provided z € (0,1). It is also easy to
verify that

Ji u(0) = ({0} x [0,00)) U (0, 00) x R),

and
J?{u(O) = ({0} x (=00,0]) U ((—00,0) x R).

We finally give some properties of J%’i and 7%# Since the proof is easy,
we omit, it.
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Proposition 2.7. Foru:Q — R, v € C*(Q) and z € Q, we have
2,+ _ 2 2,4+
Jg (u+9)(z) = (DY(z), DY (x)) + Jg u(z)

and
T (u+ ) () = (Dy(a), D()) + T5 u(x).
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3 Comparison principle

In this section, we discuss the comparison principle, which implies the unique-
ness of viscosity solutions when their values on 02 coincide (i.e. under the
Dirichlet boundary condition). In the study of the viscosity solution theory,
the comparison principle has been the main issue because the uniqueness of
viscosity solutions is harder to prove than existence and stability of them.

First, we recall some “classical” comparison principles and then, show
how to modify the proof to a modern “viscosity” version.

In this section, the comparison principle roughly means that

“Comparison principle”

viscosity subsolution u
viscosity supersolution v = wu<wvin )
u < v on 0f)

Modifying our proofs of comparison theorems below, we obtain a slightly
stronger assertion than the above one:

— max(u —v) = max(u — v)

viscosity subsolution
Q o

viscosity supersolution v

We remark that the comparison principle implies the uniqueness of (con-
tinuous) viscosity solutions under the Dirichlet boundary condition:

“Uniqueness for the Dirichlet problem”

viscosity solutions u and v
u = v on 0f)

} =— wu=vwvin Q

Proof of “the comparison principle implies the uniqueness”.

Since u (resp., v) and v (resp., u), respectively, are a viscosity subsolution
and supersolution, by u = v on 0€2, the comparison principle yields u < v
(resp., v <w)in Q. O

In this section, we mainly deal with the following PDE instead of (2.6).
vu+ F(x, Du, D*u) =0 in Q, (3.1)

where we suppose that
v >0, (3.2)

and
F:QxR"xS"— R is continuous. (3.3)
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3.1 Classical comparison principle

In this subsection, we show that if one of viscosity sub- and supersolutions
is a classical one, then the comparison principle holds true. We call this the
“classical” comparison principle.

3.1.1 Degenerate elliptic PDEs

We first consider the case when F'is (degenerate) elliptic and v > 0.

Proposition 3.1. Assume that v > 0 and (3.3) hold. Assume also
that F is elliptic. Let u € USC(Q) (resp., v € LSC(2)) be a viscosity
subsolution (resp., supersolution) of (3.1) and v € LSC(Q) N C?(Q) (resp.,
u € USC(Q2) N C?(2)) a classical supersolution (resp., subsolution) of (3.1).

If u < wvon 0, then u < v in Q.

Proof. We only prove the assertion when u is a viscosity subsolution of
(3.1) since the other one can be shown similarly.

Set maxg(u — v) =: § and choose z € Q such that (u — v)(&) = 6.

Suppose that # > 0 and then, we will get a contradiction. We note that
T € Q because u < v on 0.

Thus, the definition of u and v respectively yields

vu(z) + F(&, Dv(z), D*v(%)) < 0 < vu(2) + F(2, Dv(2), D*v(2)).
Hence, by these inequalities, we have
v =v(u—v)(z) <0,

which contradicts 8 > 0. O

3.1.2 Uniformly elliptic PDEs

Next, we present the comparison principle when v = 0 but F' is uniformly
elliptic in the following sense. Notice that if v > 0 and F' is uniformly ellip-
tic, then Proposition 3.1 yields Proposition 3.3 below because our uniform
ellipticity implies (degenerate) ellipticity.

Throughout this book, we freeze the “uniform ellipticity” constants:

0< A<A.
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With these constants, we introduce the Pucci’s operators: For X € S",
PH(X) := max{—trace(AX) | \T < A < AT for A € S},
P~ (X) := min{—trace(AX) | N < A <Al for A e S"}.
We give some properties of P*. We omit the proof since it is elementary.

Proposition 3.2. For X,Y € S", we have the following:

(1) PH(X) = =P~ (=X),

(2) PEOX) =0P*(X) for 6 > 0,

(3) PT is convex, P~ is concave,

4 P (X)+P (V) < P-(X+Y) <

(4) < PHX +Y) < PHX)+PH(Y).

‘ Definition. ‘ We say that F': ) x R" x S™ — R is uniformly elliptic
(with the uniform ellipticity constants 0 < A < A) if

forz € Q,pe R", and X, Y € S™.

We also suppose the following continuity on F' with respect to p € R":
There is p# > 0 such that

|F(z,p, X) — F(z,p', X)| < plp — | (3.4)
for x € Q,p,p' € R", and X € S™.

Proposition 3.3. Assume that (3.2), (3.3) and (3.4) hold. Assume also

that F' is uniformly elliptic. Let u € USC(Q) (resp., v € LSC(R)) be a
viscosity subsolution (resp., supersolution) of (3.1) and v € LSC(Q2) N C?(Q)
(resp., u € USC(Q)NC?(Q)) a classical supersolution (resp., subsolution) of
(3.1).

If u < v on 09, then v < v in Q.

Proof. We give a proof only when u is a viscosity subsolution and v a
classical supersolution of (3.1).
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Suppose that maxg(u —v) =: # > 0. Then, we will get a contradiction
again.

For £ > 0, we set ¢.(z) = e, where § := max{(u + 1)/\, v+ 1} > 0.
We next choose € > 0 so small that

emaxe’™ <
zEQ

oD

Let & € Q be the point such that (u— v+ ¢.)(%) = maxg(u—v+¢d.) > 6.
By the choice of ¢ > 0, since u < v on 02, we see that = € Q.
From the definition of viscosity subsolutions, we have

vu(@) + F (&, D(v — ¢:) (&), D*(v — ¢:) (1)) < 0.
By the uniform ellipticity and (3.4), we have
vu(@) + F (&, Dv(t), D*v(2)) + P~ (=D?¢c()) — pl Dge(#)| < 0.
Noting that |D¢. ()| < dze’® and P~ (—D?¢. (7)) > 62 e’ | we have
vu(#) + F(z, Dv(z), D*0(2)) + de(A6 — p)e’® < 0. (3.5)

Since v is a classical supersolution of (3.1), by (3.5) and § > (u+ 1)/, we
have )

v(u —v)(2) + dee”™ < 0.
Hence, we have

V(0 — ¢.(2)) < —6ee,

which gives a contradiction because 6 > v +1. O

3.2 Comparison principle for first-order PDEs

In this subsection, without assuming that one of viscosity sub- and supersolu-
tions is a classical one, we establish the comparison principle when F'in (3.1)
does not depend on D?u; first-order PDEs. We will study the comparison
principle for second-order ones in the next subsection.

In the viscosity solution theory, Theorem 3.4 below was the first surprising
result.

Here, instead of (3.1), we shall consider the following PDE:

vu+ H(z,Du) =0 in Q. (3.6)

26



We shall suppose that
v >0, (3.7)

and that there is a continuous function wy : [0,00) — [0,00) such that
wr(0) =0 and

|H(z,p) — H(y,p)| < wr(lz —y[(1+|p[)) foraz,y € QandpeR". (3.8)

In what follows, we will call wy in (3.8) a modulus of continuity. For
notational simplicity, we use the following notation:

M = {w:[0,00) — [0,00) | w(-) is continuous, w(0) = 0}.

Theorem 3.4. Assume that (3.7) and (3.8) hold. Let u € USC(Q) and

v € LSC(Q) be a viscosity sub- and supersolution of (3.6), respectively.
If u <wvon 0N, then u < v in Q.

Proof. Suppose maxg(u — v) =: # > 0 as usual. Then, we will get a
contradiction.

Notice that since both v and v may not be differentiable, we cannot use
the same argument as in Proposition 3.1.

Now, we present the most important idea in the theory of viscosity solu-
tions to overcome this difficulty.

Setting ®.(r,y) = u(x) — v(y) — (2¢)7 'z — y|* for ¢ > 0, we choose
(z:,9.) € Q2 x Q such that

q)a(xaa ya) = Inax (ba (LL‘, y)
z,yeN

Noting that ®.(z.,y.) > max, g P.(z,z) = 0, we have

|=T£ - ya|2

2 S u(xe) - U(ys) — 0. (39)

Since € is compact, we can find Z, § € Q, and £, > 0 such that limy_,. e = 0
and hmkﬁoo(xeka ysk) - (iﬂ, g)

We shall simply write ¢ for ¢; (i.e. in what follows, “c — 0” means that
e — 0 when k& — 00).

Setting M := maxgu — ming v, by (3.9), we have

|z, — .| <2eM =0 (ase —0).
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Thus, we have z = 7).
Since (3.9) again implies

_ 2 _ 2
0 <lim infM < limsup [7e — el
e—0 25 e—0 25
< limsup(u(z:) —v(y:)) — 6
e—0
< (u—v)(2)-0<0,
we have )
lim P =Y (3.10)
e—0 £

Moreover, since (u — v)(z) = 6 > 0, we have & € Q from the assumption
u < v on 0. Thus, for small € > 0, we may suppose that (z.,y.) € Q x .
Furthermore, ignoring the left hand side in (3.9), we have

6 < lirgrl)ionf(u(xe) —v(ye))- (3.11)

Taking ¢(z) := v(y.) + (2¢) 'z — y.|?, we see that u — ¢ attains its
maximum at x. € 2. Hence, from the definition of viscosity subsolutions, we
have

vu(z.) + H <:L‘€, u) <0.
£

On the other hand, taking ¢ (y) := u(z.) — (2¢)7'|y — z.|?, we see that
v — 1 attains its minimum at y. € 2. Thus, from the definition of viscosity
supersolutions, we have

vo(y.) + H (yg, e ; ys) > 0.

The above two inequalities yield

v(ute) = 0(0)) < o (o =il + L.

Sending ¢ — 0 in the above together with (3.10) and (3.11), we have v < 0,
which is a contradiction. O

Remark. In the above proof, we could show that lim. o u(z.) = u(%) and
lim. o v(y.) = v(&) although we do not need this fact. In fact, by (3.9), we
have

U(ye) S U(xs) - 07
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which implies that

v(z) < lingiglfv(yg) < lirgiglfu(xa) — 6 <limsupu(z.) — 0 <u(z)— 40,

e—0

and

v(z) < lirrl)ionfv(ye) <limsupv(z.) < limsupu(z.) — 0 < u(z) — 0.

e—0 e—0

Hence, since all the inequalities become the equalities, we have

u(z) = hgl}glfu(xf) = hr?_rf&lp u(z.) and v(z) = hrgrblonfv(ya) = hr?_%lp v(Ye).

We remark here that we cannot apply Theorem 3.4 to the eikonal equation
(2.1) because we have to suppose v > 0 in the above proof.

We shall modify the above proof so that the comparison principle for
viscosity solutions of (2.1) holds.

To simplify our hypotheses, we shall consider the following PDE:

H(z,Du) — f(z) =0 1in Q. (3.12)

Here, we suppose that H has homogeneous degree o > 0 with respect to the
second variable; there is a > 0 such that

H(z,up) = p*H(x,p) forz € Q,p € R" and p > 0. (3.13)

To recover the lack of assumption v > 0, we suppose the positivity of f €

C(€2); there is o > 0 such that

min f(x) =: 0 > 0. (3.14)
€N
Example. When H(z,p) = |p|* (i.e. « = 2) and f(z) =1 (i.e. 0 = 1),
equation (3.12) becomes (2.1).

The second comparison principle for first-order PDEs is as follows:

Theorem 3.5. Assume that (3.8), (3.13) and (3.14) hold. Let u €
USC(Q) and v € LSC(Q) be a viscosity sub- and supersolution of (3.12),
respectively.

If u < v on 09, then v < v in Q.
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Proof. Suppose that maxg(u — v) =: # > 0 as usual. Then, we will get a
contradiction.
If we choose p € (0,1) so that

6
(1 —p)maxu < =
Q 2

)

then we easily verify that

| D

max(pu —v) =7 >
Q
We note that for any z € Q such that (pu — v)(2) = 7, we may suppose
z € Q. In fact, otherwise (i.e. z € 9Q), if we further suppose that p < 1 is
close to 1 so that —(1 — p) mingg v < 6/4, then the assumption (v < v on
0Q) implies

<7 =pu(z) —v(z) < (p—1ov(z) <

Y

| D
= D

which is a contradiction. For simplicity, we shall omit writing the dependence
on p for 7 and (x.,y.) below.
At this stage, we shall use the idea in the proof of Theorem 3.4: Consider
the mapping ®. : 2 x 2 — R defined by
|z — y|?

d(r,y) == pu(r) —v(y) — o

O (z,y) = P(z.,y:). Note

Choose (z.,7.) € Q x Q such that max
that ®.(z.,y.) > 17 > 6/2.

As in the proof of Theorem 3.4, we may suppose that lim. ,o(z.,y.) =
(z,9) for some (z,7) € Q x Q (by taking a subsequence if necessary). Also,
we easily see that

x,yGﬁ

2
|z = ye[® < pu(w:) —v(y.) — 7 < M, '= pmaxu — minv. (3.15)
2¢e Q Q
Thus, sending ¢ — 0, we have & = ¢. Hence, (3.15) implies that pu(z) —
v(%) = 7, which yields & € Q because of the choice of p. Thus, we see that
(e, ye) € Q x Q for small £ > 0.
Moreover, (3.15) again implies
2
llm |x8 y6|
e—0 g

= 0. (3.16)
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Now, taking ¢(z) := (v(y.) + (2¢) 7'z — y-[*) /1, we see that u — ¢ attains
its maximum at . € 2. Thus, we have

H <{L‘£, xaﬂ_gys> S f(l’g)

Hence, by (3.13), we have

H <x Te - ya) < o f(x2). (3.17)

On the other hand, taking ¢ (y) = pu(z.) — (2) 7'y — x|, we see that
v — ) attains its minimum at y. € €2. Thus, we have

H (ya, ek = yg) > f(ye)- (3.18)

Combining (3.18) with (3.17), we have

flys) —pf(ze) <H (ya, %) _H (svg, T — yg>

g
Te — Ye
<wg (|$£_y£| (1+%>>

Sending £ — 0 in the above with (3.16), we have

(1 —p)f(z) <0,

which contradicts (3.14). O

3.3 Extension to second-order PDEs

In this subsection, assuming a key lemma, we will present the comparison
principle for fully nonlinear, second-order, (degenerate) elliptic PDEs (3.1).
We first remark that the argument of the proof of the comparison principle
for first-order PDEs cannot be applied at least immediately.
Let us have a look at the difficulty. Consider the following simple PDE:

vu — Au =0, (3.19)

where v > 0. As one can guess, if the argument does not work for this
“easiest” PDE, then it must be hopeless for general PDEs.
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However, we emphasize that the same argument as in the proof of The-

orem 3.4 does not work. In fact, let v € USC(Q2) and v € LSC(Q2) be a
viscosity sub- and supersolution of (3.19), respectively, such that u < v on
0Q. Setting ®.(z,y) := u(zr) — v(y) — (2¢) "z — y[* as usual, we choose
(7, y:) € Q x Q so that max, o ®.(z,y) = D.(2., ) > 0 as before.

We may suppose that (z.,y.) € Q x Q converges to (&, %) (as ¢ — 0) for
some € Q such that (u — v)(£) > 0. From the definitions of u and v, we
have n n

vu(z:) — - <0<wu(y)+ -

Hence, we only have
v(u(z:) —v(ye)) <

which does not give any contradiction as ¢ — 0.
How can we go beyond this difficulty ?

In 1983, P.-L. Lions first obtained the uniqueness of viscosity solutions
for elliptic PDEs arising in stochastic optimal control problems (i.e. Bell-
man equations; F' is convex in (Du, D?u)). However, his argument heavily
depends on stochastic representation of viscosity solutions as “value func-
tions”. Moreover, it seems hard to extend the result to Isaacs equations; F
is fully nonlinear.

The breakthrough was done by Jensen in 1988 in case when the coeffi-
cients on the second derivatives of the PDE are constant. His argument relies
purely on “real-analysis” and can work even for fully nonlinear PDEs.

Then, Ishii in 1989 extended Jensen’s result to enable us to apply to
elliptic PDEs with variable coefficients. We present here the so-called Ishii’s
lemma, which will be proved in Appendix.

Lemma 3.6. (Ishii’s lemma) Let u and w be in USC(Q). For ¢ €
C*(Q x Q), let (2,7) € Q x Q be a point such that

A A

ma(u(x) +w(y) ~ 6{,)) = u(#) +w(7) ~ (7).

Then, for each u > 1, there are X = X (u),Y =Y (u) € S™ such that

(Deo(i,9), X) € Ta u(@), (Dyo(#,5),Y) € Ta w(j),
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and .
I 0 X 0 9
—(u+||A||)<O I>§<0 Y)SAJr;A,
where A = D?¢(%,7) € S?".

Remark. We note that if we suppose that u,w € C?*(Q) and (z,9) € 2xQ
in the hypothesis, then we easily have

X = D*u(3), Y = D*w(j), and ( P ) < A
Thus, the last matrix inequality means that when u and w are only contin-
uous, we get some error term p~ 'A% where > 1 will be large.
We also note that for ¢(z,y) := |z — y|?/(2¢), we have

1 I -1 2
L 2 Aoy _ 4
A= D29(#,9) = - ( S ) and 4] = <. (3.20)

For the last identity, since

i =sw{{a (7)o 7))

the triangle inequality yields ||A]|? = 2 2sup{|z — y|? | |z]* + |y|* = 1} <
4/e?. On the other hand, taking x = —y (i.e. |z|> = 1/2) in the supremum
of the definition of ||A||? in the above, we have ||A[|? > 4/¢2.

22 + [yl = 1} |

Remark. The other way to show the above identity, we may use the fact
that for B € S™, in general,

| B|| = max{| | | A is the eigen-value of B}.

3.3.1 Degenerate elliptic PDEs

Now, we give our hypotheses on F', which is called the structure condition.

Structure condition
There is an wp € M such that if X,Y € S™ and p > 1 satisfy
I 0 X 0 I —-I
(o 9)<(n S )=wl( S ) | e
then F(y, u(r —y),Y) — F(x, u(z — y), X)
<wp(lr —y|(1 + plx —y|)) for z,y € Q.
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In section 3.3.2, we will see that if F" satisfies (3.21), then it is elliptic.
We first prove the comparison principle when (3.21) holds for F' using
this lemma. Afterward, we will explain why assumption (3.21) is reasonable.

Theorem 3.7. Assume that v > 0 and (3.21) hold. Let u € USC(Q)

and v € LSC(Q)) be a viscosity sub- and supersolution of (3.1), respectively.
If u < v on 0, then v < v in Q.

Proof. Suppose that maxg(u — v) =: € > 0 as usual. Then, we will get a
contradiction.
Again, for £ > 0, consider the mapping ®. : Q x Q — R defined by

O (z,y) = u(z) —v(y) — —lz —y|*

Let (7, 9.) € Q% be a point such that max, ¢ ®.(z,y) = ®c(7.,y.) >
f. As in the proof of Theorem 3.4, we may suppose that

lir%(xg, ye) = (z,2) for some & € Q (i.e. z.,y. € Q for small € > 0).
£—

Moreover, since we have (u — v)(z) = 6,

|1‘a - y£|2 _

lim =% = 0, (3.22)
and
6 < lingiglf(u(xe) —v(y:))- (3.23)

In view of Lemma 3.6 (taking w := —v, p:= 1/¢, ¢(z,y) = |z —y[*/(2¢))
and its Remark, we find X,Y € S™ such that

(=2 X) e Prut), (YY) € o),
9 €

2(00)<(3 )< )

Thus, the equivalent definition in Proposition 2.6 implies that

and

vu(z.) + F (x uX) <0< wo(y)+F (y T yg,Y) .
g [
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Hence, by virtue of our assumption (3.21), we have

v(u(z.) — v(y.)) < wr <|x5 — |+ M) . (3.24)

Taking the limit infimum, as & — 0, together with (3.22) and (3.23) in the
above, we have
vh <0,

which is a contradiction. O

3.3.2 Remarks on the structure condition

In order to ensure that assumption (3.21) is reasonable, we first present some

examples. For this purpose, we consider the Isaacs equation as in section
1.2.2.
F(z,p, X) :=sup in]g{L“’b(x,p,X) — f(z,a,b)},

acA be

where
L“(x,p, X) := —trace(A(z,a,b)X) + (g(z,a,b),p) for (a,b) € A x B.

If we suppose that A and B are compact sets in R™ (for some m > 1),
and that the coefficients in the above and f(-, a,b) satisfy the hypotheses
below, then F satisfies (3.21).

( (1) IM; > 0 and Joj;(-,a,b) : @ = R such that A;;(z,a,b) =

> oz, a,b)oj, (7, a,b), and |oj(z, a,b) — oj,(y, a,b)| < Mi|z — y
k=1
forz,y e Q,i,7=1,...,n,k=1,...,m, a € A,b € B,

(2) IMy > 0 such that |g;(x, a,b) — ¢;(y,a,b)| < M|z — y| for z,y € Q,
i=1,...,n, a € A b€ B,

(3) Jws; € M such that

{ |f(x,a,b) — f(y,a,b)| < ws(|lz —y|) forz,y € Qa € A,be B.

We shall show (3.21) only when

F(l‘aan) = Z Zaik(xaaa b)o-jk(‘raaa b)Xl]

ij=1k=1
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for a fixed (a,b) € A x B because we can modify the proof below to general
F.

Thus, we shall omit writing indices a and b.
To verify assumption (3.21), we choose X,Y € S™ such that

X 0 I —I
(05 ) =)
Setting & ='(o(x),...,om(x)) and ny ='(ow(y), ..., onk(y)) for any
fixed k € {1,2,...,m}, we have

(53 = T)EME)

Therefore, taking the summation over k& € {1,...,m}, we have

n

Fly,u(x =), Y) = Flz,ploe —y), X) < 30 (= Ay )Yy + Aij () Xi5)

1

<

I
iNgE

(=Y, ) + (X &, &k))
1
< 3pmnMi|z —y|>. O
We next give other reasons why (3.21) is a suitable assumption. The

reader can skip the proof of the following proposition if he/she feels that the
above reason is enough to adapt (3.21).

Proposition 3.8. (1) (3.21) implies ellipticity.
(2) Assume that F is uniformly elliptic. If @ € M satisfies that sup,q @(r)/(r +
1) < oo, and

|F(z,p, X) = F(y,p, X)| < @(lz — y|( X]| + |p[ + 1)) (3.25)

for z,y € Q,p € R", X € 8", then (3.21) holds for F.
Proof. For a proof of (1), we refer to Remark 3.4 in [6].
For the reader’s convenience, we give a proof of (2) which is essentially used

in a paper by Ishii-Lions (1990). Let X,Y € S™ satisfy the matrix inequality in
(3.21). Note that X <Y.
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Multiplying < :5 _II ) to the last matrix inequality from both sides, we

X-Y X4V _, (00
X+Y X-v =" o 1)

Thus, multiplying < sé;] > for s € R and &,n € R™ with |n| = |{| = 1, we see that

have

0 < (121 — (X = Y)n,m))s® = 2((X + Y&, m)s — (X — V)&, £).
Hence, we have

(X +Y)EmP < (X = Y)EO| (120 + (X = Y)n,m)]),

which implies
IX + Y[ < [|X = Y|'/2(120+ || X = Y|/,

Thus, we have
1
IXII < S(IX = Y|+ X +Y[)) <[ X = Y|'/2(6p + || X = Y[)"/>.
2

Since X <Y (i.e. the eigen-values of X — Y are non-positive), we see that
F(y,p,X) = F(y,p.Y) > P (X —-Y) 2 A|X =Y. (3.26)

For the last inequality, we recall Remark after Lemma 3.6.

Since we may suppose w is concave, for any fixed ¢ > 0, there is M, > 0 such
that @(r) < e+ M.r and @(r) = inf.so(e + M.r) for » > 0. By (3.25) and (3.26),
since | X|| < 3p and [|Y]| < 3u, we have

F(yapa Y) - F(xaan)
< e+ Mz —yl(pl+ 1)+ sup {Mcfw—ylt"2 (6 +1)'/2 = At}
0<t<6u

Noting that
3
M|z — y|t'/?(6p + )1/ — Mt < XM&?MQJ —yl%
we have
Fly,p(z —y),Y) = Fz, p(z —y), X)
< et Melz —yl|(plz — y[ + 1) + 33" MZulz — yf?,

which implies the assertion by taking the infimum over ¢ > 0. O
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3.3.3 Uniformly elliptic PDEs

We shall give a comparison result corresponding to Proposition 3.3; F' is
uniformly elliptic and v > 0.

Theorem 3.9. Assume that (3.2), (3.3), (3.4) and (3.21) hold. Assume
also that F is uniformly elliptic. Let v € USC(Q) and v € LSC(2) be a
viscosity sub- and supersolution of (3.1), respectively.

If u < wvon 0, then u < v in ).
Remark. As in Proposition 3.3, we may suppose v = 0.

Proof. Suppose that maxg(u — v) =: 0 > 0.
Setting o := (u + 1)/, we choose 6 > 0 so that

dmax e’ < —.
z€Q 2
We then set 7 := max,qg(u(r) — v(z) + de’') > 6 > 0.

Putting é(x,y) := (2e) |z — y[> — de”™, we let (z.,y.) € Q x Q be the
maximum point of u(z) — v(y) — ¢(z,y) over Q x Q.

By the compactness of Q, we may suppose that (z.,y.) — (2,7) € QxQ
as € — 0 (taking a subsequence if necessary). Since u(z.)—v(y.) > ¢(z.,y.),
we have |z. —y.|* < 2¢(maxg u—ming v+27'0) and moreover, & = . Hence,
we have

u(®) — v(3) + de”™ > 7,

which implies & €  because of our choice of 4. Thus, we may suppose that
(e, y:) € Q x Q for small £ > 0. Moreover, as before, we see that

lim LE — y5|2 =
e—0 £

0. (3.27)

Applying Lemma 3.6 to 4(z) := u(z)+de”* and —v(y), we find X, Y € S

such that ((z. —y.)/e, X) € 72’+ﬁ(«’175), ((xe —ye)/e,Y) € 72’_v(y5), and

3( 1 O X O 3( I -1
_E(o I)S(O—Y>§E<—I 1)'
We shall simply write z and y for x. and y., respectively.
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Note that Proposition 2.7 implies

(x v doe’ e, X — 6026”1[1> € 72’+u(x),
£

where e; € R™ and I; € S™ are given by

1 10 0
0 0 0 0
e = and I :=| . | :
0 0 0 0

Setting r := doe’™, from the definition of u and v, we have
0<F (y,ﬂ,Y> - F (a:,ﬂ —rel,X—arh) .
e £
In view of the uniform ellipticity and (3.4), we have

0§ru+ar’P+(Il)+F<y,ﬂ,Y> —F(:U,u,X>.
15 9

Hence, by (3.21) and the definition of P*, we have

2
0<r(p—ol)+wp <|x—y|+w>,

which together with (3.27) yields 0 < §oe”® (u— o). This is a contradiction
because of our choice of 0 > 0. O
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4 Existence results

In this section, we present some existence results for viscosity solutions of
second-order (degenerate) elliptic PDEs.

We first present a convenient existence result via Perron’s method, which
was established by Ishii in 1987.

Next, for Bellman and Isaacs equations, we give representation formulas
for viscosity solutions. From the dynamic programming principle below, we
will realize how natural the definition of viscosity solutions is.

4.1 Perron’s method

In order to introduce Perron’s method, we need the notion of viscosity solu-
tions for semi-continuous functions.

‘ Definition. ‘ For any function u : Q — R, we denote the upper and
lower semi-continuous envelope of v by u* and u,, respectively, which are

defined by

u*(r) =lim sup wu(y) and w.(z)=Ilim inf _u(y).
EHOyEBE(gg)ﬁﬁ €20 yeB. ()N

We give some elementary properties for v* and u, without proofs.

Proposition 4.1. For u : Q — R, we have

(1) u.(z) < ulzr) <u*(z) forz € Q,

(2) u*(x) = —(—u).(x) forz € Q,

(3) wu*(resp., u,) is upper (resp., lower) semi-continuous in €, i.e.
limsupu*(y) < u*(z), (resp., ligrgiglfu* (y) > u.(x)) for z € Q,

y—x .
(4) if u is upper (resp., lower) semi-continuous in 2,

then u(x) = u*(z) (resp., u(z) = u.(z)) for x € Q.

With these notations, we give our definition of viscosity solutions of

F(z,u, Du, D*u) =0 in Q. (4.1)

‘ Definition. ‘ We call u : Q — R a viscosity subsolution (resp., superso-
lution) of (4.1) if u* (resp., u.) is a viscosity subsolution (resp., supersolution)
of (4.1).
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We call u : © — R a viscosity solution of (4.1) if it is both a viscosity
sub- and supersolution of (4.1).

Remark. We note that we supposed that viscosity sub- and supersolu-
tions are, respectively, upper and lower semi-continuous in our comparison
principle in section 3. Adapting the above new definition, we omit the semi-
continuity for viscosity sub- and supersolutions in Propositions 3.1, 3.3 and
Theorems 3.4, 3.5, 3.7, 3.9.

In what follows,

we use the above definition.

Remark. We remark that the comparison principle Theorem 3.7 implies
the continuity of viscosity solutions.

“Continuity of viscosity solutions”

viscosity solution u

satisfies u* = u, on 02 } = uwel(@)

Proof of the continuity of u. Since u* and u, are, respectively, a viscosity
subsolution and a viscosity supersolution and u* < wu, on 02, Theorem 3.7
yields u* < u, in Q. Because u, < u < u* in 0, we have u = u* = u, in §;

uweC(). O

We first show that the “point-wise” supremum (resp., infimum) of viscos-
ity subsolutions (resp., supersolution) becomes a viscosity subsolution (resp.,
supersolution).

Theorem 4.2. Let S be a non-empty set of upper (resp., lower) semi-
continuous viscosity subsolutions (resp., supersolutions) of (4.1).

Set u(x) := sup,csv(x) (resp., u(z) := infyesv(z)). If sup,cx lu(z)] <
oo for any compact sets K C €0, then u is a viscosity subsolution (resp.,
supersolution) of (4.1).

Proof. We only give a proof for subsolutions since the other can be proved

in a symmetric way.
For & € Q, we suppose that 0 = (u* — ¢)(2) > (u* — ¢)(z) for x € Q\ {7}
and ¢ € C%*(Q). We shall show that

F(z,0(2), Dg(2), D*¢(2)) < 0. (4.2)

41



Let 7 > 0 be such that By, () C 2. We can find s > 0 such that

f—g) < —s. 4,
max (u” — ) < —s (4.3)

We choose zp € B,(&) such that limy o2, = 2, u*(2) — k= < u(wy)
and |¢(zx) — ¢(2)| < 1/k. Moreover, we select upper semi-continuous uy € S
such that uy(zy) + k' > u(xy).

By (4.3), for 3/k < s, we have

max (ug — ¢) < (up — @) (x).

0By (%)

Thus, for large k > 3/s, there is y, € B,.(Z) such that u; — ¢ attains its
maximum over B, (Z) at y;. Hence, we have

F(yk, ur(yr), Do (yr), D*¢(yx)) < 0. (4.4)

Taking a subsequence if necessary, we may suppose z := limy_, yx. Since

<@ =) +

> w

« . 3
(u” =) (@) < (ur — @) (xx) + 7 < (ue — ) () +
by the upper semi-continuity of u*, we have

(u* = 9)(2) < (u* — 9)(2),

which yields z = Z, and moreover, limy,_, o, ug(yx) = v*(2) = ¢(&). Therefore,
sending k — oo in (4.4), by the continuity of F', we obtain (4.2). O

Our first existence result is as follows.

Theorem 4.3. Assume that F is elliptic. Assume also that there are

a viscosity subsolution & € USC(Q) N L52,(2) and a viscosity supersolution

- loc

n e LSC(Q) N LY.(Q) of (4.1) such that
£<n inQ.
Then, u(x) := sup,es v(x) (resp., u(x) = inf _sw(x)) is a viscosity solu-

tion of (4.1), where

. v is a viscosity subsolution
= { veUsc(@) ‘ of (4.1) such that £ < v <1 in }
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<I‘eSp., 3 = { w e LSC(Q) ‘ 5 w 1S a VISCOSIty SuperSO]utlon }) -

f (4.1) such that £ < w < n in €

Sketch of proof. We only give a proof for u since the other can be shown
in a symmetric way.

First of all, we notice that S # () since £ € S.

Due to Theorem 4.2, we know that u is a viscosity subsolution of (4.1).
Thus, we only need to show that it is a viscosity supersolution of (4.1).

Assume that v € LSC(Q). Assuming that 0 = (u — ¢)(%) < (u — ¢)(z)
for z € 2\ {#} and ¢ € C?(Q), we shall show that

F(z,¢(z), Do(z), D*¢(2)) = 0.
Suppose that this conclusion fails; there is # > 0 such that
F(i,¢(2), Do(2), D*¢(&)) < —26.
Hence, there is » > 0 such that
F(z,¢(z) +t, Dé(z), D*p(x)) < —0 for x € B,(2) C Qand [¢t| < 7. (4.5)

First, we claim that ¢(#) < n(&). Indeed, otherwise, since ¢ < u < n in
Q, n — ¢ attains its minimum at = € 2. See Fig 4.1.

Fig 4.1

Hence, from the definition of supersolution 7, we get a contradiction to
(4.5) for x = & and ¢t = 0.
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We may suppose that £(2) < n(Z) since, otherwise, £ = ¢ = n at Z.
Setting 37 := n(Z) — u(z) > 0, from the lower and upper semi-continuity of
n and &, respectively, we may choose s € (0, r] such that

() +7 < ¢p(x) + 27 <n(x) for x € Bo().

Moreover, we can choose ¢ € (0,s) and 75 € (0, min{7,r}) such that
d(z) + 279 < u(x) for v € By, o(7) \ Bs_o(%).

If we can define a function w € S such that w(z&) > u(z), then we finish
our proof because of the maximality of u at each point.

Now, we set

w(w) = { matule), o) b B

u(x) in Q\ B,().
See Fig 4.2.
™~y =n(z)
""""" Ly = ()
\ y=¢&()
Y -
y = w(x) Fig 4.2

It suffices to show that w € S. Because of our choice of 75,5 > 0, it is
easy to see & < w < nin ). Thus, we only need to show that w is a viscosity
subsolution of (4.1).

To this end, we suppose that (w* — ¢)(z) < (w* —)(z) = 0 for z € Q,
and then we will get

F(z,w"(2), Dip(z), D*(2)) < 0. (4.6)

If 2 € Q\B,(2) =: €, by Proposition 2.4, then u*—1) attains its maximum
at z € ', we get (4.6).
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If 2 € OB,(&), then (4.6) holds again since w = u in By . (%) \ B, _.(%).
It remains to show (4.6) when z € B,(Z). Since ¢ + 7y is a viscosity
subsolution of (4.1) in By(#), Theorem 4.2 with  := B,(Z) yields (4.6). O

Correct proof, which the reader may skip first. Since we do not suppose that
u € LSC(R) here, we have to work with w,.

Suppose that 0 = (us —¢)(£) < (u.—¢)(z) for z € Q\ {2} for some ¢ € C?(Q),
z€Q,0>0and

F(i, ¢(2), Dp(&), D*$(2)) < ~26.

Hence, we get (4.5) even in this case.

We also show that the w defined in the above is a viscosity subsolution of (4.1).
It only remains to check that supg(w —u) > 0.

In fact, choosing xy € By (%) such that

1

we easily verify that if 1/k < min{ry/2, s} and |¢(2) — ¢(zx)| < 70/2, then we have

w(zg) > o) + 10 > $(&) + % — u(3) + % > u(zy). O

4.2 Representation formula

In this subsection, for given Bellman and Isaacs equations, we present the
expected solutions, which are called “value functions”. In fact, via the dy-
namic programming principle for the value functions, we verify that they are
viscosity solutions of the corresponding PDEs.

Although this subsection is very important to learn how the notion of
viscosity solutions is the right one from a view point of applications in optimal
control and games,

if the reader is more interested in the PDE theory than these applications,
he/she may skip this subsection.

We shall restrict ourselves to

investigate the formulas only for first-order PDEs
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because in order to extend the results below to second-order ones, we need
to introduce some terminologies from stochastic analysis. However, this is
too much for this thin book.

As will be seen, we study the minimization of functionals associated with
ordinary differential equations (ODEs for short), which is called a “deter-
ministic” optimal control problem. When we adapt “stochastic” differential
equations instead of ODEs, those are called “stochastic” optimal control
problems. We refer to [10] for the later.

Moreover, to avoid mentioning the boundary condition, we will work on
the whole domain R".

Throughout this subsection, we also suppose (3.7); v > 0.

4.2.1 Bellman equation
We fix a control set A C R"™ for some m € N. We define A by
A:={a:[0,00) = A | af-) is measurable}.
For z € R" and « € A, we denote by X (+; z, «) the solution of

{ X'(t) = g();((t()),)a:(t;), for t > 0, (4.7)

where we will impose a sufficient condition on continuous functions g : R" x
A — R" so that (4.7) is uniquely solvable.

For given f: R" X A — R, under suitable assumptions (see (4.8) below),
we define the cost functional for X (-; z, a):

J(z,a) = /0°° eV (X (8 7, ), ) d.

Here, v > 0 is called a discount factor, which indicates that the right hand
side of the above is finite.

Now, we shall consider the optimal cost functional, which is called the
value function in the optimal control problem:;

u(x) == alrelaJ(x,a) for x € R".
Theorem 4.4. (Dynamic Programming Principle) Assume that

(1) sup (7€)l + (s 0) e < 00,

(2) igg |f(z,a) = f(y,a)| <ws(Jlz —y|) forz,yecR", (48)
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where w; € M.
For any T > 0, we have

/T e (X (t 2, a), aft))dt + e Tu(X(T; z, a))) :

0

u(w) = inf (

acA

Proof. For fixed T > 0, we denote by v(x) the right hand side of the
above.
Step 1: u(z) > v(z). Fix any € > 0, and choose a. € A such that

u(r) +e > /Ooo e (X (t;z,0.), a(t))dt.

Setting & = X (T;x, ) and &, € A by &.(t) = a.(T + t) for t > 0, we have

/Oooe”tf(X(t;a:,ag),ag(t))dt: /OTe”tf(X(t;x,ag),ag(t))dt
feT /0 T e (X (17, 60), 40 (1)) d.

Here and later, without mentioning, we use the fact that
X(t+T;z,a) =X (t;2,&) forT>0,t>0and a € A,

where
a(t):=at+T) (t>0) and 7 :=X(T;z,«).

Indeed, the above relation holds true because of the uniqueness of solutions
of (4.7) under assumptions (4.8). See Fig 4.3.

Thus, taking the infimum in the second term of the right hand side of the
above among A, we have

T
u(z) +e> / e (X (E 2, ), at))dt + e~ Tu(#),
0
which implies one-sided inequality by taking the infimum over A since € > 0

is arbitrary.
Step 2: u(z) <wv(z). Fix ¢ > 0 again, and choose «, € A such that

o(z) + 2 > /OT e (X (£ 3, 00), 0 (8))dt + e Tu(2),
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where z := X (T'; x, ). We next choose ag € A such that
u(@)+e > [T e (X (o), en (1))t
0

Now, setting
_ a.(t) for t € [0,T),
aolt) = { ai(t—=T) fort>T,

we see that ~
v(r) +2e > / e V(X (t;x, ap), ap(t))dt,
0

which gives the opposite inequality by taking the infimum over ay € A since
e > 0 is arbitrary again. O

Now, we give an existence result for Bellman equations.

Theorem 4.5. Assume that (4.8) holds. Then, u is a viscosity solution
of
sup{vu — (g(z,a), Du) — f(z,a)} =0 in R". (4.9)
a€EA
Sketch of proof. In Steps 1 and 2, we give a proof when u € USC(R")
and u € LSC(R"), respectively.
Step 1: Subsolution property. Fix ¢ € C'(R"), and suppose that 0 =
(u—@)(z) > (u— ¢)(x) for some & € R" and any = € R".
Fix any ag € A, and set ag(t) := ap for t > 0 so that ay € A.
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For small s > 0, in view of Theorem 4.4, we have

¢(&) — e 9(X (57, 0)) < u(®) — e u(X(s; 7, )

Setting X (t) := X (¢; &, ap) for simplicity, by (4.7), we see that

d

— (e7p(X(1)). (4.10)

e HEO(X (1) — (g(X (1), 00), DO(X ()} =

Hence, we have

0 2/0 e "{re(X(t) — (9(X (1), a0), DE(X (1)) — f(X(t), ao) }dt.
Therefore, dividing the above by s > 0, and then sending s — 0, we have

0> vp(&) — (g(Z, a0), D(2)) — f(Z, a9),

which implies the desired inequality of the definition by taking the supremum
over A.

Step 2: Supersolution property. To show that u is a viscosity supersolu-
tion, we argue by contradiction.

Suppose that there are # € R", # > 0 and ¢ € C'(R") such that 0 =
(u—)(2) < (u—¢)(x) for x € R", and that

sup{vg(z) — (g(#,a), DP(i)) — f(&,a)} < —20.

a€A

Thus, we can find € > 0 such that

sup{vo(r) — (g(x,a), Dop(x)) — f(x,a)} < =0 for x € B.(z).  (4.11)

a€A

By assumption (4.8) for g, setting to := ¢ /(sup,ec4 [|9(+, @)||Loomry+1) > 0,
we easily see that

X (53, 0) — & < /Ot X'(s: 4, a)|ds < = for t € [0, 9] and o € A.
Hence, by setting X (t) := X (¢; 2, «) for any fixed a € A, (4.11) yields
vp(X (1)) — (9(X (1), (1)), DP(X (1)) — (X (1), (t)) < =0 (4.12)
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vi

for t € [0,¢y]. Since (4.10) holds for « in place of «p, multiplying e~"* in
(4.12), and then integrating it over [0, ¢y], we obtain

v

¢(i‘) — e”’tOQﬁ(X(tU)) . /Oto eiytf(X(t),a(t))dt < —Q(l B efl/to)_

Thus, setting 0y = 6(1 — e™"")/v > 0, which is independent of o € A, we
have

u(@) < /Ot° e (X (1), ()t + e u(X (f)) — bo.

Therefore, taking the infimum over A, we get a contradiction to Theorem
4.4. O

Correct proof, which the reader may skip first.
Step 1: Subsolution property. Assume that there are £ € R", # > 0 and ¢ €
C'(R™) such that 0 = (u* — ¢)(£) > (u* — ¢)(z) for z € R™ and that

sup{vg(@) — (9(&,a), Dd(&)) — (i, a)} > 26.
a€A

In view of (4.8), there are ap € A and r > 0 such that
vp(xz) = (9(z,a0), DP(x)) — f(z,a0) 2 0 for z € By (). (4.13)
For large k > 1, we can choose zj, € By /(&) such that u* () < u(zy) + k!
and |p(2) — ¢(xg)| < 1/k. We will only use k such that 1/k <r.
Setting ag(t) := ag, we note that Xy (t) := X (t;x, ap) € Bop(2) for t € [0, to]

with some t; > 0 and for large k.
On the other hand, by Theorem 4.4, we have

to
w(zy) < /0 e~V F (X (1), ao)dt + eV u( Xy (to)).
Thus, we have
2 - 1 o —vt —vt
Baw) = = < 9l@) — 1 Sulon) < [ e F(Xiult),a0)dt + (X (b))
0

Hence, by (4.13) as in Step 1 of Sketch of proof, we see that

< /Oto e " f(Xk(t), a0) + (9(Xk(t), a0), DH(Xy (1)) — vp( X (t)) }dt

(1 - eillto)a

I

< -

RN
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which is a contradiction for large k.
Step 2: Supersolution property. Assume that there are £ € R™, # > 0 and
¢ € C'(R™) such that 0 = (us — ¢)(%) < (us — ¢)(z) for z € R"™ and that

sup{v¢(z) — (9(&,a), DP(%)) — f(#,a)} < —26.

a€A

In view of (4.8), there is r > 0 such that
vop(z) — (g(x,a), Dd(xz)) — f(z,a) < —0 for z € Bo,(z) and a € A.  (4.14)

For large k > 1, we can choose z;, € By/;(&) such that w,(2) > u(zy) — k!
and |¢(Z) — ¢(x)| < 1/k. In view of (4.8), there is ty > 0 such that

1
Xi(t; o, ) € Bap (%) forallk > — a € Aand t € [0,t].
r

Now, we select oy € A such that

1t
u(zg) + % > / eil’tf(X(t;azk, ag), ax(t))dt + ef'jtou(X(to; Ty Of))-
0

Setting X (t) := X (¢; 2k, ax ), we have

M)+ 22 60) + 22 utw) + 12 [ e X0, anl)di + e OB(Xi(D).

Hence, we have

% = /Oto e {{g(Xk(t), (1), D(Xi (1)) + f (Xi(t), ak(t)) — v(Xy (1)) }dt.

Putting (4.14) with a4 in the above, we have
3 to
>0 Ut
k= /0 o
which is a contradiction for large £ > 1. O

4.2.2 Isaacs equation

In this subsection, we study fully nonlinear PDEs (i.e. p € R" — F(x,p) is
neither convex nor concave) arising in differential games.
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We are given continuous functions f : R" x A x B — R and ¢g : R" x
A x B — R" such that

(1) sup {IFCraB)llome + llg (s aB)llwremn | < 0o,

(a,b)EAX B (4.15)
() sup |f(z.a,0) = f(y,a,b)| < ws(|z — y]) for 2,y € R,
(a,b)eAxB

where w; € M.
Under (4.15), we shall consider Isaacs equations:

sup inf{vu — (g(x, a,b), Du) — f(x,a,b)} =0 in R", (4.16)
acA bEB

and
inf sup{vu — (g(x,a,b), Du) — f(z,a,b)} =0 in R". (4.16")
beB qcA

As in the previous subsection, we shall derive the expected solution.
We first introduce some notations: While we will use the same notion A
as before, we set

B:={p:[0,00) — B | () is measurable}.
Next, we introduce the so-called sets of “non-anticipating strategies”:
for any 7" > 0, if ay and oy € A satisfy
r=¢~v:A—>-B that «q(t) = as(t) for a.a. t € (0,7),
then v[aq](t) = v[as](t) for a.a. t € (0,T)

and

for any 7' > 0, if 5, and 5 € B satisfy
then §[f1](t) = 0[B2](¢) for a.a. t € (0,T)

A= { d:B— A that £y (t) = Ba(t) for a.a. t € (0,T),

Using these notations, we will consider maximizing-minimizing problems
of the following cost functional: For o € A, f € B, and x € R",

T@,0,8) = [ e f(X (13,0, 8),0(t), B(0)dt,
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where X (-;z, a, B) is the (unique) solutions of

{ X'(t) = g(X (t),gz((gf())sﬁz(t;)_ for ¢ >0, (4.17)

The expected solutions for (4.16) and (4.16), respectively, are given by

u(z) =sup inf [ [ e (X (0 fal), alt), Alal (1),

fyel“ acA

and

:mfsug/ e F(X (t 2, 6(8), ), S[B)(1), B(1))dt

0EA Be

We call v and v upper and lower value functions of this differential game,
respectively. In fact, under appropriate hypotheses, we expect that v < u,
which cannot be proved easily. To show v < u, we first observe that v and v
are, respectively, viscosity solutions of (4.16) and (4.16"). Noting that

sup 1nf{w“ (9(x,a,b),p)—f(x,a,b)} < 1nf sup{ur (9(x,a,b),p)—f(x,a,b)}
acA bEB B gea
for (z,r,p) € R"xRxR", we see that u (resp., v) is a viscosity supersolution
(resp., subsolution) of (4.16") (resp., (4.16)). Thus, the standard comparison
principle implies v < u in R™ (under suitable growth condition at |z| — oo
for u and v).

We shall only deal with u since the corresponding results for v can be
obtained in a symmetric way.

To show that u is a viscosity solution of the Isaacs equation (4.16), we first
establish the dynamic programming principle as in the previous subsection:

Theorem 4.6. (Dynamic Programming Principle) Assume that (4.15)
hold. Then, for T > 0, we have

(&) = sup inf ( [ e F (X, 0, 5fd), ), el (1) ) |

el a€A e " Tu(X (T z, o, v]ar]))

Proof. For a fixed T' > 0, we denote by w(x) the right hand side of the
above.
Step 1: u(z) < w(z). For any € > 0, we choose 7. € T" such that

u(r) —e < 51613 0Oe””tf(X(t;:JE, a,vela]), a(t), v.[a](t))dt =: .
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For any fixed oy € A, we define the mapping 7, : A — A by

] ao(?) for t € [0,7),
Tolo] = { a(t —T) forte [T, o) for o€ A.

Thus, for any a € A, we have

o< [ e w0, ol) o), el )

+ /T T e (X (8 2, Tolal, v [ Tolad)), Tolo] (), 1. [Tolal] (1) )dt
= [El + If.

We next define 4 € I' by
) (t) =7 [Tola])(t +T) fort >0 and o € A.

Note that 4 belongs to I'.
Setting & := X (T'; x, ag, Ve [v]), we have

12 = [T e (X (1.3, 0,90a]), alt), Ao ()t
Taking the infimum over o € A, we have
u(w)—= <I4eT inf / “E(X (7, o, ]a]), a(t), A]a] (1)) dt
=: I+ If
Since I2 < e *Tu(#), we have
u(z) —e < IM + e " Tu(s),

which implies u(x) — e < w(x) by taking the infimum over oy € A and then,
the supremum over I'. Therefore, we get the one-sided inequality since € > 0
is arbitrary.

Step 2: u(z) > w(x). For £ > 0, we choose 7! € T such that

w(s) — & < inf ( [t £ (X002 00), ), 2 () ) |
e e Tu(X (T, 0,7 [0)
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For any fixed ag € A, setting & = X(T; z, ag, 7! [v]), we have

T
w(r) —e < /0 e " F(X (2, 0,7z [on]), 0 (1), 1z (0] (1))t + e
Next, we choose 72 € T such that

u(@) —e < olérel,fct OOO e (X (2, a,72[a]), a(t), v2a](t))dt. =: I.

For a € A, we define the mapping 77 : A — A by
Tila](t) == a(t+T) fort>0.

Thus, we have

I's /000 e f(X (t; 2, Ti[aol, v2([Ti[awol]), Tilew](8), %2 Ti[aw])(t))dt =:

Now, for a € A, setting

R . El[a](t) for t €10, 7),
Hal®) = { Pl —T) for t € [To0),

and X (t) := X (& &, Ti[aw], ¥2[Ti[cw]]), we have

o0

I = . e F(X(t=T), Tiloo)(t = T), 32 Ti o]l (t — T))dt
=T . e F(X(t —T), a0(t), ¥[ov] ())d.
Since
. A | X(t;z, 00,7 [ag]) fort e [0,T),
X (., a0, Flo]) = { X(t-T) for t € [T, 0),
we have

w(z) — 2 < /0 e F(X(t; 7, a0, Haw]), o (1), Hwo] (¢)) dit.
Since aq is arbitrary, we have

w(z) —2¢ < inf OOO e " f(X(t; 2,0, 9]a]), at), 4] (t))dt,

%)

T
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which yields the assertion by taking the supremum over I' and then, by
sending ¢ -+ 0. O

Now, we shall verify that the value function u is a viscosity solution of
(4.16).

Since we only give a sketch of proofs, one can skip the following theorem.
For a correct proof, we refer to [1], originally by Evans-Souganidis (1984).

Theorem 4.7. Assume that (4.15) holds.
(1) Then, u is a viscosity subsolution of (4.16).
(2) Assume also the following properties:

(1) A CR™ is compact for some integer m > 1.

(#3) there is an wq € M such that
|f(x,a,b) - f(x,a',b)| + |g(:v,a, b) - g(xaa’lab” < (,UA(|0, - a,|)
forr € R", a,a’ € Aandb € B.

(4.18)

Then, u is a viscosity supersolution of (4.16).

Remark. To show that v is a viscosity subsolution of (4.16"), instead of (4.18),
we need to suppose the following hypotheses:

(i) B C R™ is compact for some integer m > 1.

(i4) there is an wp € M such that
|f($70’7 b) - f(az,a,b')| + |g($7a7b) - g(fE,a, b,)| < wB(|b - b,|)
forzr € R", b,b) € Band a € A,

(4.18")

while to verify that v is a viscosity supersolution of (4.16"), we only need (4.15).

Sketch of proof. We shall only prove the assertion assuming that v € USC(R")
and v € LSC(R"™) in Step 1 and 2, respectively.

To give a correct proof without the semi-continuity assumption, we need a bit
careful analysis similar to the proof for Bellman equations. We omit the correct
proof here.

Step 1: Subsolution property. Suppose that the subsolution property fails; there
are z € R", § > 0 and ¢ € C'(R™) such that 0 = (u — ¢)(z) > (u — ¢)(y) (for all
y € R") and

ilelgblgg{yu(x) - (g(m,a,b),DqS(x)) - f(x,a,b)} > 30.

We note that X (-;z, a,y[e]) are uniformly continuous for any («,y) € A x T
in view of (4.15).
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Thus, we can choose that ag € A such that

blgg{y(ﬁ(x) - (g(x,ao,b),D¢(x)) - f(xaa'Oab)} > 26.

For any v € T, setting ag(t) = ag for ¢ > 0, we simply write X(-) for
X (5, a9, v[ap]). Thus, we find small £y > 0 such that

vp(X(t)) — (9(X (%), a0, v[ao](?)), DH(X(£))) — f(X(2), a0, v[ew](t)) = 0

for t € [0,%9]. Multiplying e ** in the above and then, integrating it over [0, t],
we have

-y <o [TLE (e 000) + e (X (0,0, 7a0l(0)}

= (o) — 0 p(X () — [ (X007l (D).

Hence, we have

u(x) — (1~ ) > /Oto e~V F (X (£), a0, Y]] (8))dt + e 0 u(X (t9)) = .

Taking the infimum over A, we have

f>mf(A“e”ﬂxmaammuammmw»ﬁ)_
T acA —ut .
e P ou(X (to; 7, 0, 1[0])

Therefore, since v € T' is arbitrary, we have

M@_Qu_ew%zﬁmmf(A“a”ﬂxm%mvmxamﬂ@th>,

yel acA +67Vt0u(X(t0;x,a77[a]))

which contradicts Theorem 4.6.

Step 2: Supersolution property. Suppose that the supersolution property fails;
there are z € R", § > 0 and ¢ € C'(R™) such that 0 = (u — ¢)(x) < (u — ¢)(y)
for y € R™, and

supgn]_g{uu(az) —(9(z,a,b),D¢(z)) — f(z,a,b)} < —36.
acAbE

For any a € A, there is b(a) € B such that

vu(z) = (g(z,a,b(a)), Dé(x)) — f(z,a,b(a)) < -26.
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In view of (4.18), there is £(a) > 0 such that if |a — ¢’| < e(a) and |z — y| < £(a),
then we have

V¢(y) - (g(yaala b(a’))7 D¢(y)> - f(yaala b(a’)) < -0.
From the compactness of A, we may select {a;} | such that

M
A= U Aka
k=1

where
Ap:={a € A|la—ax| < elag)}.

Furthermore, we set Ay = Ay, and inductively, Ay = Ay \ U?;%Aj; AN flj =0

for k # j. We may also suppose that Ay # 0 for k=1,..., M.
For a € A, we define

Yo[e](t) := b(a) provided a(t) € Ay,
Now, setting X (¢) := X (¢; x, @, yo[e]), we find ¢y > 0 such that
v(X (1)) — (g(X(t), a(t), vl (), DS(X (1)) — f(X(t), a(t), v[al(t)) < -0

for t € [0,tp]. Multiplying e~"* in the above and then, integrating it, we obtain

@) = e (X (k) — /0 " e X8, alt) Lo )t < —%(1 — vy,

Since a € A is arbitrary, we have
to
u(z) + Q(l —e7V0) < inf /0 e " f(X (62, 0,a]), alt), vola](t))dt ,
v acA +e Vou(X (to; z, o, yola]))

which contradicts Theorem 4.6 by taking the supremum over I'. O

4.3 Stability

In this subsection, we present a stability result for viscosity solutions, which
is one of the most important properties for “solutions” as noted in section 1.
Thus, this result justifies our notion of viscosity solutions.

However, since we will only use Proposition 4.8 below in section 7.3, the
reader may skip the proof.
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First of all, for possibly discontinuous F': Q@ x R x R" x S™ — R, we are
concerned with
F(z,u, Du, D*>u) =0 in Q. (4.19)

We introduce the following notation:

F*(:U,T,p,X) = lir%inf{ F(y,s,q,Y) ‘ yEQmBg(:L‘),|s—r| <eg, },
e—

lg—pl <& Y X[ <e
) yeonB@ |1 <
F (x’fr‘,p’X) — llg%Sllp{ F(y757Q7Y) ‘ |q—p| <8;||Y_X|| <€ .

‘ Definition. ‘ We call u : Q — R a viscosity subsolution (resp., super-
solution) of (4.19) if u* (resp., u.) is a viscosity subsolution (resp., super-
soluion) of

F.(x,u, Du, D*u) <0 (resp., F*(x,u, Du, D*u) > 0) in Q.

We call u : Q@ — R a viscosity solution of (4.19) if it is both a viscosity
sub- and supersolution of (4.19).

Now, for given continuous functions Fj : Q2 x R x R" x " — R, we set

E('T7r7p7X)
ly —z| < 1/k,|s —r| < 1/k,
= lim inf ¢ Fj(y,s,¢,Y) | |¢—p| <1/ ||Y = X|| <1/k },
k—o00 .
and 7 > k

F(z,r,p, X)
|y—l’|<1/k,|3—7’|<]./k,
= lim sup¢ F;(y,s,¢,Y) | |[¢—p| <1/k||Y = X|| < 1/k
k—o00 .
and 7 > k

Our stability result is as follows.
Proposition 4.8. Let F, : 2 x R x R" x S — R be continuous
functions. Let uy, : @ — R be a viscosity subsolution (resp., supersolution)

of
Fy. (2, ug, Duy, D*u) =0 in Q.
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Setting u (resp., u) by

u(x) == kll)rglo sup{(u;)*(y) | vy € Bijk(x)NQ, j > k}

(resp., u(x) = kILIgO inf{(u;).(y) | y € Bi(x) N, j> k})

for v € Q, then u (resp., u) is a viscosity subsolution (resp., supersolution)
of
F(x,u, Du,D?u) <0 (resp., F(z,u, Du, D*u) > 0) in Q.

Remark. We note that w € USC(Q), u € LSC(Q), F € LSC(Q x R x
R" x S") and F € USC(Q x R x R" x S").

Proof. We only give a proof for subsolutions since the other can be shown
similarly.

Given ¢ € C*(Q), we let 2y € Q be such that 0 = (U—¢)(zo) > (u—¢)(x)
for z € Q\ {zo}. We shall show that F(zo,u(z), Dp(x0), D?*¢(z0)) < 0.

We may choose zj, € B,(xy) (for a subsequence if necessary), where r €
(0,dist (g, 09)), such that

lim 2 =zo and  lim (ug)*(zx) = u(zo). (4.20)
k—o00 k—o00

We select y;, € B,(z9) such that ((ug)* — ¢)(yx) = supBr(xﬂ((uk)* — ).
We may also suppose that limy .y, = 2z for some z € B,(x) (taking
a subsequence if necessary). Since ((ug)* — @) (yx) > ((ur)* — @) (xx), (4.20)
implies
0 = liminf((uw)* — 6) @) < liminf((us)’ - 6)(3)
< i ) () — (2
< 1131 sup(ug)*(yr) — ¢(2) < (@ — ¢)(2).
— 00
Thus, this yields z = z¢ and limy_,(ug)*(yx) = T(zy). Hence, we see that
yr € B,(xg) for large k > 1. Since (uy)* — ¢ attains a maximum over B, (x)
at yr € B(xg), by the definition of uy (with Proposition 2.4 for Q' = B,.(xy)),
we have

Fe(yk, (ur)* (yr), Do (yx), D*d(yi)) <0,

which concludes the proof by taking the limit infimum with the definition of
F. O

60



5 Generalized boundary value problems

In order to obtain the uniqueness of solutions of an ODE, we have to suppose
certain initial or boundary condition. In the study of PDEs, we need to
impose appropriate conditions on 02 for the uniqueness of solutions.

Following the standard PDE theory, we shall treat a few typical boundary
conditions in this section.

Since we are mainly interested in degenerate elliptic PDEs, we cannot
expect “solutions” to satisfy the given boundary condition on the whole
of Q. The simplest example is as follows: For  := (0,1), consider the
“degenerate” elliptic PDE

—3—1;+u:0 in (0,1).
Note that it is impossible to find a solution u of the above such that u(0) =
u(l) = 1.

Our plan is to propose a definition of “generalized” solutions for boundary
value problems. For this purpose, we extend the notion of viscosity solutions
to possibly discontinuous PDEs on € while we normally consider those in €.

For general G : 2 x R x R" x S — R, we are concerned with

G(z,u, Du, D*u) =0 in Q. (5.1)
As in section 4.3, we define

G*(x;raan) = ll_l;%lnf{ G(y,s,q,y) ‘ ?JEQﬂBg(l‘),|s—r| <€, },

lg—p| <e|lY —X| <e¢

G*(x,r,p,X) = ]ir%sup{ G(y,s,q,Y) ‘ (TS QmBg(l‘), |s —r| <eg, }
e—

lg—p|<e Y - X| <e¢

‘ Definition. ‘ We call u : Q — R a viscosity subsolution (resp., superso-
lution) of (5.1) if, for any ¢ € C?(9),

G.(z,u"(z), Dd(x), D*¢(x)) < 0

(resp., G*(z,u.(2), Dp(z), D*p(2)) > 0)

provided that u* — ¢ (resp., u, — ¢) attains its maximum (resp., minimum)
at z € Q.
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We call u : © — R a viscosity solution of (5.1) if it is both a viscosity
sub- and supersolution of (5.1).

Our comparison principle in this setting is as follows:

“Comparison principle in this setting”

viscosity subsolution u of (5.1)
viscosity supersolution v of (5.1)

}:>u§vin§

Note that

the boundary condition is contained in the definition.

Using the above new definition, we shall formulate the boundary value
problems in the viscosity sense. Given F' : 2 x R x R” x S — R and
B: 00 xR xR"xS8" — R, we investigate general boundary value problems

B(z,u, Du, D2u) = 0 on 9. (5-2)

{ F(xz,u, Du, D*s) =0 in Q,
Setting G' by

L F(xaraan) foerQ’
G(l’,ryan) = { B(l‘,'r,an) for = S aQ,

we give the definition of boundary value problems (5.2) in the viscosity sense.

‘ Definition. ‘ We call u : Q — R a viscosity subsolution (resp., superso-
lution) of (5.2) if it is a viscosity subsolution (resp., supersolution) of (5.1),
where G is defined in the above.

We call u : © — R a viscosity solution of (5.2) if it is both a viscosity
sub- and supersolution of (5.2).

Remark. When F' and B are continuous and G is given as above, G, and
G* can be expressed in the following manner:

[ F(z,r,p,X) for x € Q,
Gz, p, X) = { min{F(z,r,p, X), B(z,r,p, X)} forz € 9Q,

* _ F(f,T,p,X) fOI'l'EQ,
Flonp X) = { max{F(z,r,p, X), B(z,r,p, X)} for z € 0Q.
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It is not hard to extend the existence and stability results corresponding
to Theorem 4.3 and Proposition 4.8, respectively, to viscosity solutions in
the above sense. However, it is not straightforward to show the comparison
principle in this new setting. Thus, we shall concentrate our attention to
the comparison principle, which implies the uniqueness (and continuity) of
viscosity solutions.

The main difficulty to prove the comparison principle is that we have to
“avoid” the boundary conditions for both of viscosity sub- and supersolu-
tions.

To explain this, let us consider the case when G is given by (5.2). Let u
and v be, respectively, a viscosity sub- and supersolution of (5.1). We shall
observe that the standard argument in Theorem 3.7 does not work.

For £ > 0, suppose that (z,y) — u(z) — v(y) — (2¢) 7'z — y|? attains its
maximum at (z.,y.) € Q x Q. Notice that there is NO reason to verify that
(7e,y.) € Q2 x Q.

The worst case is that (z.,y.) € 02 x 9Q. In fact, in view of Lemma 3.6,
we find X, Y € S™ such that ((z. —y.)/e, X) € 7%+u(:1:8), (xe —ye)/e,Y) €
7%71)(%), the matrix inequalities in Lemma 3.6 hold for X,Y. Hence, we
have

min{F <x€,u(x£), Te T ye,X) , B <x€,u(x£), Te T ye,X)} <0
£ £

and

max {F (yg,v(yg), u, Y) , B <yaav(ya)a - yg,Y>} > 0.
£ €
However, even if we suppose that (3.21) holds for F' and B “in Q”, we cannot

get any contradiction when

Te — Ye
g

P (e uled), =2, X) <0< B (g 0m), =5, Y)

€

or
Te — Ye

B (e u@), "=, X) <0 < F (g 0p), =5y ).

€

It seems impossible to avoid this difficulty as long as we use |z — y|?/(2¢) as
“test functions”.
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Our plan to go beyond this difficulty is to find new test functions ¢.(x, y)
(instead of |x — y|?/(2¢)) so that the function (z,y) — u(z) —v(y) — ¢ (z,y)
attains its maximum over @ x Q at an interior point (z.,1.) € Q x Q. To
this end, since we will use several “perturbation” techniques, we suppose two
hypotheses on F': First, we shall suppose the following continuity of F' with
respect to (p, X)-variables.

There is an wy € M such that
|F(z,p, X) = F(2,¢,Y)| < wo(lp — ¢ + [|X = Y]) (5.3)
forx e Q,p,ge R", XY € S".

The next assumption is a bit stronger than the structure condition (3.21):

( There is wp € M such that
if X,V € S™ and p > 1 satisfy
I 0 X 0 I I
(1) (X 2 e F)owe
F(y,p,Y) = F(z,p, X) < Gp(lz —y|(1 + pl + plz — y|))
forz,y e Q,pe R", X, Y € S™.

\

5.1 Dirichlet problem

First, we consider Dirichlet boundary value problems (Dirichlet problems for
short) in the above sense.

Assuming that viscosity sub- and supersolutions are continuous on 0f2,
we will obtain the comparison principle for them.

We now recall the classical Dirichlet problem

2 _ .
{ vu+ F(z, Du, D*u) =0 in Q, (5.5)

u—g=0 on 0.
Note that the Dirichlet problem of (5.5) in the viscosity sense is as follows:

vu + F(z, Du, D*u) <0 in Q,

subsolution <= { min{vu + F(z, Du, D*u),u — g} <0 on 0,

and

vu+ F(x, Du, D*u) > 0 in €,

supersolution <= { max{vu + F(x,DU,D2U);U —g} >0 on 09Q.
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We shall suppose the following property on the shape of 2, which may
be called an “interior cone condition” (see Fig 5.1):

For each 2 € 092, there are 7,5 € (0,1) such that (5.6)
T —rn ,TE ’

(2) +r€ € Qforx € QN B;i(z (0,7) and £ € B;(0).

Here and later, we denote by n(z) the unit outward normal vector at z € 9.

Fig 5.1

Theorem 5.1. Assume that v > 0, (5.3), (5.4) and (5.6) hold. For
g € C(09), we let u and v : Q@ — R be, respectively, a viscosity sub- and
supersolution of (5.5) such that

liminfu*(z) > u*(2) and limsupov.(z) < w.(2) forze€ Q.  (5.7)

TEQ—2 TEQ—2
Then, u* < v, in ).
Remark. Notice that (5.7) implies the continuity of u* and v, on 9.

Proof. Suppose that maxg(u* — v,) =: § > 0. We simply write v and v
for v* and v,, respectively.

Case 1: maxpq(u — v) = 6. We choose z € 0 such that (u —v)(z) = 6.
We shall divide three cases:

Case 1-1: u(z) > g(2). For €, € (0,1), where 6 > 0 will be fixed later,
setting ¢(z,y) := (2e?) 7z —y —edn(2)|> — 0|z — 2%, we let (2.,y.) € AxQ
be the maximum point of ®(z,y) := u(x) — v(y) — ¢(x,y) over Q x Q.
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Since z—edn(z) € Q for small € > 0 by (5.6), ®(x.,y.) > ®(z, z—edn(z))
implies that

|1‘a — Ye — 55n(z)|2
2e2

< u(r.)—v(y.) —u(2) +v(z—edn(2)) — |z, — 2|*. (5.8)

Since |7, —y.| < Me, where M := v/2(maxgu — ming v — u(2) +v(z) +1)/2,
for small ¢ > 0, we may suppose that (z.,y.) = (Z,2) and (z. —y.)/e — 2
for some 2 € Q and 2 € R" as ¢ — 0 along a subsequence (denoted by &
again). Thus, from the continuity (5.7) of v at z € 99, (5.8) implies that

0 < u(d) —v(z) — 0] — 2|?,
which yields & = z. Moreover, we have

|$5 —Ye — 851’1(2’)|2

lim

=0
=0 g2 ’

which implies that
Tt (5.9)
e—0 £
Furthermore, we note that y. = x. —£dn(z) + o(¢) € Q because of (5.6).
Applying Lemma 3.6 with Proposition 2.7 to u(x) +e~'d(n(z), z) — d|z —
z|? = 2716% and v(y) + e~ 'd(n(2),y), we find X,V € S™ such that

e Ye 9 T
<“” = Ye _ gm(z) +26(z. — 2), X + 26[) e T2 u(x.), (5.10)
Te — Ye g 72
2 g“(Z),Y € Jg v(ye), (5.11)

and
_%<é?>§<g-%>§%<i'7>'
Putting p. := e %(z. — y.) — de~'n(2), by (5.3), we have
F(xe,pe, X) — F(xe,pe +25(x: — 2), X +201) < wo(20]z. — 2| +20). (5.12)

Since y. € Q and u(z.) > g(x.) for small € > 0 provided z. € 09, in view
of (5.10) and (5.11), we have

l/(u(xs) o U(ys)) < F(yeapsay) o F(xs;ps + 25(375 - Z),X + 25[)
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Combining this with (5.12) , by (5.4), we have

v(u(z:)—v(ye)) < wo(20|x.—2|+20)+wF <|:c5 — Y| (1 + |pe| + @)) i

Sending & — 0 together with (5.9) in the above, we have
v < wo(26) + wr(267),

which is a contradiction for small > 0, which only depends on # and v.

Case 1-2: v(z) < g(2). To get a contradiction, we argue as above replacing
o(z,y) by ¥(z,y) == (2e*) 7z — y +e0n(2)|? — 6|z — 2|* so that z. = y. —
edn(z) + o(e) € Q for small £ > 0. Note that we need here the continuity of
u on 0N in (5.7) while the other one in (5.7) is needed in Case 1-1. (See also
the proof of Theorem 5.3 below.)

Case 1-3: u(z) < g(z) and v(z) > g(z). This does not occur because 0 <
0= (u—0v)(z)<0.

Case 2: supyq(u — v) < 6. In this case, using the standard test function
|z — y|?/(2¢) (without &|z — z|* term), we can follow the same argument as
in the proof of Theorem 3.7. O

Remark. Unfortunately, without assuming the continuity of viscosity so-
lutions on OS2, the comparison principle fails in general.
In fact, setting F'(x,r,p, X) = r and g(z) = —1, consider the function

u(z) =

0 foraxz e
—1 for z € 09).

Note that v* = 0 and u, = u in €, which are respectively a viscosity sub- and
supersolution of G(x,u, Du, D*u) = 0 in Q. Therefore, this example shows
that the comparison principle fails in general without assumption (5.7).

5.2 State constraint problem

The state constraint boundary condition arises in a typical optimal control
problem. Thus, if the reader is more interested in the PDE theory, he/she
may skip Proposition 5.2 below, which explains why we will adapt the “state
constraint boundary condition” in Theorem 5.3.
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To explain our motivation, we shall consider Bellman equations of first-order.

sup{rvu — (g(z,a), Du) — f(z,a)} =0 in .
a€EA

Here, we use the notations in section 4.2.1.
We introduce the following set of controls: For z € €,

A(z) == {a(-) e A| X(t;z,a) € Q for t > 0}.
We shall suppose that
A(z) #0 for all z € Q. (5.13)

Also, we suppose that

(1) sup (I a)llzo () + lg( a)llwrmg)) < oo,
acA

@) suplf(o0) - Sa)l wpllo —y) for oy €, (5:14)

where w; € M.
We are now interested in the following the optimal cost functional:

u(z) ;= inf e " f(X(tx, ), at))dt.
acA(z) Jo

Proposition 5.2. Assume that v > 0, (5.13) and (5.14) hold. Then, we have
(1) u is a viscosity subsolution of

Sup{l/’u - (g(waa)aD,‘O - f(m,a)} <0 in{,
a€A

(2) u is a viscosity supersolution of

sup{vu — (g(z,a), Du) — f(z,a)} >0 in .
acA

Remark. We often say that w satisfies the state constraint boundary condition
when it is a viscosity supersolution of

“F(z,u, Du,D?*u) >0 in 0Q".

Proof. In fact, at = € , it is easy to verify that the dynamic programming
principle (Theorem 4.4) holds for small ' > 0. Thus, we may show Theorem 4.5
replacing R" by .
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Hence, it only remains to show (2) on 9€2. Thus, suppose that there are & € 99,
6 >0 and ¢ € C'(Q2) such that (u, — ¢)(#) = 0 < (uy — ¢)(x) for x € Q, and

Slelg{VQS(ﬂ?) —(9(&,a), DP()) — f(#,a)} < —26.
a
Then, we will get a contradiction.

Choose x, € QN By (&) such that u, (&) + k1 > u(zg) and |¢(2) — ¢(zx)| <
1/k. In view of (5.14), there is ty > 0 such that for any o € A(z) and large k > 1,
we have

v(Xi (1)) — (9(Xk (1), (t)), DS(X(£))) — f(Xi(t), (t)) < =0 for t € (0,20),

14

where X (t) := X (t; 21, ). Thus, multiplying e and then, integrating it over

(0,tp), we have

Ha) < P PXa0) + [ T, i)t — 21— ),

v

Since we have

u(zp) < % +e "0u(Xg(t)) + /0 " e Y F(Xp(t), aft))dt — 5(1 — e Vo),

taking the infimum over A(xy), we apply Theorem 4.4 to get

2 0
0< = ——(1—e"ho
— k I/( e )7
which is a contradiction for large k. O

Motivated by this proposition, we shall consider more general second-order
elliptic PDEs.

Theorem 5.3. Assume that v > 0, (5.3), (5.4), (5.6) and (5.12) hold. Let
u: Q — R be, respectively, a viscosity sub- and supersolution of

vu + F(z,Du,D?*u) <0 inQ,

and

vv + F(z,Dv,D?v) >0 in Q.
Assume also that

liminfu*(z) > u*(2) for z € 99. (5.15)

TENQ—2
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Then, u* < v, in Q.

Remark. In 1986, Soner first treated the state constraint problems for deter-
ministic optimal control (i.e. first-order PDEs) by the viscosity solution approach.

We note that we do not need continuity of v on 9 while we need it for
Dirichlet problems. For further discussion on the state constraint problems, we
refer to Ishii-Koike (1996).

We also note that the proof below is easier than that for Dirichlet problems
in section 5.1 because we only need to avoid the boundary condition for viscosity
subsolutions.

Proof. Suppose that maxg(u* —v,) =: 6 > 0. We shall write v and v for u*
and v,, respectively, again.

We may suppose that maxgo(u — v) = 6 since otherwise, we can use the
standard procedure to get a contradiction.

Now, we proceed the same argument in Case 1-2 in the proof of Theorem 5.1
(although it is not precisely written).

For £, > 0, setting ¢(z,y) := (2¢2) |z — y + edn(2)|? + 6|z — 2|?, where n is
the unit outward normal vector at z € 99, we let (z.,y.) € Q x Q the maximum
point of u(z) —v(y) — ¢(x,y) over Q x Q. As in the proof of Theorem 3.4, we have

lim(z.,y:) = (2,2) and lim ze = el = 0. (5.16)
e—0

e—0 €

Since z. = y. — eon(z) 4+ o(e) € Q for small € > 0, in view of Lemma 3.6 with
Proposition 2.7, we can find X,Y € S™ such that

Te — Y ) Y
< 652 -+ gn(z) +26(ze —2), X + 251) € J§+u(aze),

g2 €

3/1 O X 0 3 (1 —I
_57(0 I>§<O—Y>Se_2<—f I>'

Setting p. := £ 2(z. — y.) + de 'n(z), we have

e Ye 5 F2,—
(52 + S ) € T ol

and

v(u(zes) — v(y:)) < F(ye,pe,Y) — F(ze,pe + 26(z. — 2), X + 261)
< wo(20]m. — 2|+ 20) + & <|$E el <1 ol I:v8;y|>> |
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Hence, sending ¢ — 0 with (5.16), we have
vl < w0(26) + (IJF(252),

which is a contradiction for small § > 0. O

5.3 Neumann problem

In the classical theory and modern theory for weak solutions in the distribu-
tion sense, the (inhomogeneous) Neumann condition is given by

(n(z), Du(x)) — g(z) =0 on 09,

where n(z) denotes the unit outward normal vector at z € 0.

In Dirichlet and state constraint problems, we have used a test function
which forces one of z. and y. to be in €2. However, in the Neumann boundary
value problem (Neumann problem for short), we have to avoid the boundary
condition for viscosity sub- and supersolutions simultaneously. Thus, we need
a new test function different from those in sections 5.1 and 5.2.

We first define the signed distance function from €2 by

(2) = inf{|r —y| | y € 002}  for z € Q°,
PR = —inf{|z —y| | y € 00} for z € Q.

In order to obtain the comparison principle for the Neumann problem,
we shall impose a hypothesis on Q (see Fig 5.2):

(1) There is 7 > 0 such that
Q C (Bi(z+7m(2)))° for z € 0.
(2) There is a neighborhood N of 992 such that
p € C*(N), and Dp(z) = n(z) for z € 99.

(5.17)

Remark. This assumption (1) is called the “uniform exterior sphere con-
dition”. Since |x — z — 7n(z)| > 7 for z € 9Q and z € (), we have
L2
(n(z), 2~ 2) < 2

for z € 90 and z € Q. (5.18)

A

27

It is known that when 0L is “smooth” enough, (2) of (5.17) holds true.
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We shall consider the inhomogeneous Neumann problem:

vu+ F(x, Du, D*u) =0 in Q, (5.19)

(n(x), Du) — g(z) =0 on 09Q. '

Remember that we adapt the definition of viscosity solutions of (5.19) for
the corresponding G in (5.2).

Theorem 5.4. Assume that v > 0, (5.3), (5.4) and (5.17) hold. For
g € C(09), we let u and v :  — R be a viscosity sub- and supersolution of
(5.19), respectively.

Then, u* < v, in ).

Remark. We note that we do not need any continuity of v and v on 0f2.

Proof. As before, we write u and v for «* and v,, respectively.

As in the proof of Theorem 3.7, we suppose that maxg(u — v) =: 6 > 0.
Also, we may suppose that maxaq(u — v) = 6.

Let z € 00 be a point such that (u — v)(z) = . For small 6 > 0, we see
that the mapping x € Q — u(x) — v(y) — 0|z — z|* takes its strict maximum
at z.

For small €,§ > 0, where § > 0 will be fixed later, setting ¢(z,y) =
(22) 7'z =yl — 9(x)(n(2),z — y) + 0(p(x) + p(y) + 2) + dlz — 2>, we let
(7.,y.) € Q x Q be the maximum point of ®(z,y) := u(x) — v(y) — ¢(x,y)
over QNN x QN N, where N is in (5.17).

Since ®(z.,y.) > P(z, 2), as before, we may extract a subsequence, which
is denoted by (z.,y.) again, such that (z.,y.) — (&,%). We may suppose
& € 09Q. Since ®(z,z) > limsup,_,, P(z., y.), we have

u(z) —v(2) — 8|2 — 2|* > 6,
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which yields £ = z. Moreover, we have
= 0. (5.20)

Applying Lemma 3.6 to u(z) — d(p(x) + 1) — g(2)(n(z), z) — 6|z — z|* and
—v(y) —0(p(y) + 1) + g(2)(n(z),y), we find X,Y € S™ such that

(p- + 0n(2) +20(. — 2), X +0D?p(x.) +201) € Jo u(z.),  (5.21)

(p- — on(y.), Y — 6D%p(y.)) € Tg v(ye), (5.22)

where p. := e (z. — y.) + g(z)n(z), and

3(1 0 X 0 3 I I
_2(0 1>§(0 —Y)SE(—I 1)'
When z. € 09, by (5.18), we calculate in the following manner:

(n(z.), Dpd(2,y:)) = (n(2.),p: + on(z.) + 20(z. — 2))
> _% + g(2)(n(z.),n(2)) + 6 — 28]z, — 2.

Hence, given § > 0, we see that

|

(n(z.), Dep(xe,y:)) — g(xs) > for small € > 0.
Thus, by (5.21), this yields
vu(z.) + F(z.,p. + 6n(z.) +26(z. — 2), X +6D?p(z.) + 261) < 0. (5.23)

Of course, if z, € €2, then the above inequality holds from the definition.
On the other hand, similarly, if y. € 0f2, then

J
<1’1(y5), _Dy¢(xsa y5)> - g(ys) S _5 for small € > 0.
Hence, by (5.22), we have

vu(ye) + F(ye,pe — 0n(ye),Y = 3Dp(y.)) > 0. (5.24)
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Using (5.3) and (5.4), by (5.23) and (5.24), we have

V(u(xa) - U(ye)) S F(ysapeay) - F(xeapE;X) + 2(,()0((5M)

where M := 3 + sup,.vrn (2|2 — 2| 4+ |D?p(z)]). Sending ¢ — 0 with (5.20)
in the above, we have
v < 2w (6M),

which is a contradiction for small 6 > 0. O

5.4 Growth condition at |z| — oo

In the standard PDE theory, we often consider PDEs in unbounded domains,
typically, in R". In this subsection, we present a technique to establish the
comparison principle for viscosity solutions of

vu + F(x, Du, D*u) =0 in R". (5.25)

We remind the readers that in the proofs of comparison results we always
suppose maxg(u — v) > 0, where u and v are, respectively, a viscosity sub-
and supersolution. However, considering €2 := R", the maximum of u — v
might attain its maximum at “|z| — o0”. Thus, we have to choose a test
function ¢(z,y), which forces u(z) — v(y) — ¢(x, y) to takes its maximum at
a point in a compact set.

For this purpose, we will suppose the linear growth condition (for sim-
plicity) for viscosity solutions.

We rewrite the structure condition (3.21) for R™:

There is an wp € M such that if X,Y € S™ and p > 1 satisfy

—m(é ?)S(ﬁ-f;>§3ﬂ<f[_f>’ (5.26)

then F(y, u(x —vy),Y) — F(x, ulx —y), X)
<wr(lz = y[(1+ plz —y]) for z,y € R".

We will also need the Lipschitz continuity of (p, X) — F'(x, p, X), which
is stronger than (5.3).

{ There is p9 > 0 such that |F(z,p, X) — F(z,q,Y)| (5.27)

<u(lp—q|l+||X =Y]) forz € R",p,g e R", X, Y € S™.
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Proposition 5.5. Assume that v > 0, (5.26) and (5.27) hold. Let u and
v : R" — R be, respectively, a viscosity sub- and supersolution of (5.25).
Assume also that there is Cy > 0 such that

u (z) < Co(l+z]) and wv.(zx) > —Co(1+|z|) forxz e R".  (5.28)

Then, u* < v, in R".

Proof. We shall simply write v and v for u* and v,, respectively.

For 6 > 0, we set 05 := sup,cpn (u(z) —v(z) — 26(1 + |2|*)). We note that
(5.28) implies that there is z; € R™ such that 05 = u(z5) —v(z5) —20(1+]z5]?).
Set 6 := lim sups_,, 05 € RU {o0}.

When # < 0, since

(u—v)(z) <28(1+ |2*) + 05 for 6 >0 and v € R,

we have v < v in R".

Thus, we may suppose 6 € (0,00]. Setting ®s(x,y) := u(zr) — v(y) —
(2e) Mo —yl? = 6(1 + |z|*) — 6(1 + |y|?) for &, > 0, where 6 > 0 will be
fixed later, in view of (5.28), we can choose (z.,y.) € R" x R" such that
(I)(;(l‘g, ya) = IMaX(z,y)cR" xR (I)(;(l‘, y) > 0.

As before, extracting a subsequence if necessary, we may suppose that

lim |1‘a - y£|2 —
e—0 £

0. (5.29)

By Lemma 3.6 with Proposition 2.7, putting p. := (z. — y.)/e, we find
X,Y € S™ such that

(p- + 20w, X + 261) € T u(z.),

(p: — 20y, Y — 201) € 7

3 (1 O X O 3
_E(o 1>§(o_y>fg

v(ye),

I -1

-1 1 )
Hence, we have
v(u(zs) — v(ye))
F(ye,pe — 26y.,Y — 201) — F(x.,p. + 262, X + 251)
F(ya,pg,Y) - F(l‘g,pg,X) + 26#0(2 + |1'g| + |yg|)
|=Ta - y£|

and

IAINA

IN

or (m . (1 ; ) T 0B(2 4 [o 2 + . ?) + O,
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where C' = C(ug,v) > 0 is independent of £, > 0. For the last inequality,
we used “2ab < 1a® 4+ 77'6? for T > 0.
Therefore, we have

vl < wr <|:va — Y| (1 + M)) +C6.
g

Sending £ — 0 in the above together with (5.29), we get v < C4¢, which is
a contradiction for small 6 > 0. O
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6 [LP-viscosity solutions

In this section, we discuss the LP-viscosity solution theory for uniformly
elliptic PDEs:
F(x, Du, D*u) = f(z) in Q, (6.1)

where FF: @ x R" x S" — R and f: 2 — R are given. Since we will use the
fact that u 4+ C (for a constant C' € R) satisfies the same (6.1), we suppose
that I does not depend on wu itself. Furthermore, to compare with classical
results, we prefer to have the inhomogeneous term (the right hand side of
(6.1)).

The aim in this section is to obtain the a priori estimates for LP-viscosity
solutions without assuming any continuity of the mapping * — F(z,q, X),
and then to establish an existence result of LP-viscosity solutions for Dirichlet
problems.

Remark. In general, without the continuity assumption of v — F(z, p, X),
even if X — F(z,p, X) is uniformly elliptic, we cannot expect the unique-
ness of LP-viscosity solutions. Because Nadirashvili (1997) gave a counter-
example of the uniqueness.

6.1 A brief history

Let us simply consider the Poisson equation in a “smooth” domain 2 with
zero-Dirichlet boundary condition:

(6.2)

—Au=f in Q,
u=0 on 0N.

In the literature of the regularity theory for uniformly elliptic PDEs of
second-order, it is well-known that

“if f € C7(Q) for some o € (0,1), then u € C*7(Q)”. (6.3)
Here, C7(U) (for a set U C R") denotes the set of functions f : U — R such
that
sup|f(x)|+ sup |f(x)_f(y)| < 00
zeU z,ycU,x#y |37 - y|”
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Also, Ck7(U), for an integer k > 1, denotes the set of functions f: U — R
so that for any multi-index o = (a,...,0a,) € {0,1,2,...}" with |a| =
Yo <k, D € C?(U), where

Do ala\f

T 8:]‘;‘111 N 8:1;%11 ’

These function spaces are called Holder continuous spaces and the implication
in (6.3) is called the Schauder regularity (estimates). Since the PDE in
(6.2) is linear, the regularity result (6.3) may be extended to

“if f e CF2(Q) for some o € (0, 1), then u € C**27(Q)”. (6.4)
Moreover, we obtain that (6.4) holds for the following PDE:
—trace(A(z)D*u(z)) = f(x) in Q, (6.5)
where the coefficient A(-) € C*(€Q, S™) satisfies that
NE[ < (A@)E, &) < Al for € € R” and 2 € 60

Furthermore, we can obtain (6.4) even for linear second-order uniformly
elliptic PDEs if the coefficients are smooth enough.

Besides the Schauder estimates, we know a different kind of regularity
results: For a solution u of (6.5), and an integer k € {0,1,2,...},

“if f € WFP(Q) for some p > 1, then u € WF2r(Q)”. (6.6)

Here, for an open set O C R", we say f € LP(O) if |f|P is integrable in O,
and f € W*P(Q) if for any multi-index o with || < k, D*f € LP(O). Notice
that LP(Q) = WO (Q).

This (6.6) is called the L” regularity (estimates). For a later con-
venience, for p > 1, we recall the standard norms of LP(O) and W*Pr(0O),
respectively:

1/p
lullseoy o= ([ Ju@)Pdz) " and Julwesioy = 3 IDullmio

] <k

In Appendix, we will use the quantity ||u||z»(q) even for p € (0, 1) although
this is not the “norm” (i.e. the triangle inequality does not hold).
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We refer to [13] for the details on the Schauder and L regularity theory
for second-order uniformly elliptic PDEs.

As is known, a difficulty occurs when we drop the smoothness of A;;.

An extreme case is that we only suppose that A;; are bounded (possibly
discontinuous, but still satisfy the uniform ellipticity). In this case, what can
we say about the regularity of “solutions” of (6.5) ?

The extreme case for PDEs in divergence form is the following:

- i 6% (&g(ﬂ%(@) = f(x) in Q. (6.7)

ij=1 "1

De Giorgi (1957) first obtained Holder continuity estimates on weak so-
lutions of (6.7) in the distribution sense; for any ¢ € C§°(2),

/Q ((A(z) Du(x), Do(x)) — f(x)p(x)) dz = 0.

Here, we set
. - ' ¢(-) is infinitely many times differentiable,
oo (Q) = { $:0—>R ‘ and supp ¢ is compact in €2 '

We refer to [14] for the details of De Giorgi’s proof and, a different proof
by Moser (1960).

Concerning the corresponding PDE in nondivergence form, by a stochas-
tic approach, Krylov-Safonov (1979) first showed the Holder continuity esti-
mates on “strong” solutions of

—trace(A(z)D*u(z)) = f(x) in Q. (6.8)

Afterward, Trudinger (1980) (see [13]) gave a purely analytic proof for it.
Since these results appeared before the viscosity solution was born, they
could only deal with strong solutions, which satisfy PDEs in the a.e. sense.
In 1989, Caffarelli proved the same Holder estimate for viscosity solutions
of fully nonlinear second-order uniformly elliptic PDEs.
To show Holder continuity of solutions, it is essential to prove the follow-
ing “Harnack inequality” for nonnegative solutions. In fact, to prove the
Harnack inequality, we split the proof into two parts:
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weak Harnack inequality
for “super”solutions

Harnack inequality
for “solutions”

local maximum principle
for “sub”solutions

In section 6.4, we will show that LP-viscosity solutions satisfy the (inte-
rior) Holder continuous estimates.

6.2 Definition and basic facts

We first recall the definition of LP-strong solutions of general PDEs:
F(x,u, Du, D*u) = f(z) in Q. (6.9)
We will use the following function space:
W2P(Q) :={u:Q = R | Cuc W(Q) for all ¢ € CF(Q)}.
Throughout this section, we suppose at least
S
P=73

so that u € W2P(Q) has the second-order Taylor expansion at almost all
points in Q, and that u € C'(2).

‘ Definition. ‘We call u € C'(Q) an LP-strong subsolution (resp., super-
solution, solution) of (6.9) if u € W2P(Q), and

F(z,u(x), Du(x), D*u(z)) < f(z) (resp., > f(x), = f(z)) a.e.in Q.

Now, we present the definition of LP-viscosity solutions of (6.9).

‘ Definition. ‘We call w € C(2) an LP-viscosity subsolution (resp., su-
persolution) of (6.9) if for ¢ € W2P(Q), we have

limess. inf (F(y,u(y), Dg(y), D*6(y)) — f(y)) <0

e—0 B (z)
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(res. timess. sup () D). D%6(0) ~ 1) = 0)

provided that u — ¢ takes its local maximum (resp., minimum) at = € €.
We call u € C(£2) an LP-viscosity solution of (6.9) if it is both an LP-
viscosity sub- and supersolution of (6.9).

Remark. Although we will not explicitly utilize the above definition, we
recall the definition of ess.sup, and ess.inf4 of h: A — R, where A C R"
is a measurable set:

ess.suph(y) :=inf{M € R | h < M a.e. in A},
A
and
ess.igfh(y) =sup{M € R | h > M a.e. in A}.

Coming back to (6.1), we give a list of assumptionson F': Q x R" x S" —
R:

(1) F(x,0,0) =0 for z € Q,
(2) = — F(z,q,X) is measurable for (¢, X) € R" x S™, (6.10)
(3) F is uniformly elliptic.

We recall the uniform ellipticity condition of X — F(x, ¢, X)) with the con-
stants 0 < A < A from section 3.1.2.
For the right hand side f : Q2 — R, we suppose that

ferr() forp>n. (6.11)
We will often suppose the Lipschitz continuity of F' with respect to ¢ €
R";

(6.12)

there is u > 0 such that |F(z,q, X) — F(z,q¢', X)| < plg — ¢|
for (z,¢,¢', X) € A x R" x R" x S™.

Remark. We note that (1) in (6.10) and (6.12) imply that F has the linear
growth in Du;
|F(z,q,0)| < plgq] forxz € Qand g € R".

Remark. We note that when ©z — F(z,q, X) and z — f(x) are continu-
ous, the definition of LP-viscosity subsolution (resp., supersolution) of (6.1)
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coincides with the standard one under assumption (6.10) and (6.12). For a
proof, we refer to a paper by Caffarelli-Crandall-Kocan-Swiech [5].

In this book, we only study the case of (6.11) but most of results can be
extended to the case when p > p* = p*(A, \,n) € (n/2,n), where p* is the
so-called Escauriaza’s constant (see the references in [4]).

The following proposition is obvious but it will be very convenient to
study LP-viscosity solutions of (6.1) under assumptions (6.10), (6.11) and
(6.12).

Proposition 6.1. Assume that (6.10), (6.11) and (6.12) hold. If u €
C(Q) is an LP-viscosity subsolution (resp., supersolution) of (6.1), then it is
an LP-viscosity subsolution (resp., supersolution) of

P~ (D*u) — p|Du| < f inQ
(resp., PH(D*u) + p|Du| > f in Q) .
We recall the Aleksandrov-Bakelman-Pucci (ABP for short) maximum
principle, which will play an essential role in this section (and also Appendix).

To this end, we introduce the notion of “upper contact sets”: For u :
O — R, we set

[[u, O] ::{ z €0 u(y) < u(z)+ (p,y —z) forall y € O

there is p € R" such that }

Proposition 6.2. (ABP maximum principle) For p > 0, there is Cj :=

Co(A, A\, n, p,diam(Q2)) > 0 such that if for f € L"(Q), u € C(Q) is an
L™-viscosity subsolution (resp., supersolution) of

P~ (D*u) — p|Du| < f in Q" [u]
(resp., PH(D*u) + pu|Du| > f in Q" [—u)),
then

max u < max ut + diam(Q)Col| f || 1» 0100+ [u))

(resp., mﬁax(—u) < T%%X(—U)Jr + diam(Q)C[)“f||Ln(F[_u’Q]ﬂQ+[_u])> ;
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where

Qfu] :={z € Q| u(z) > 0}.

The next proposition is a key tool to study LP-viscosity solutions, partic-
ularly, when f is not supposed to be continuous. The proof will be given in
Appendix.

Proposition 6.3. Assume that (6.11) holds for p > n. For any p > 0,
there are an LP-strong subsolution v and an LP-strong supersolution v &
C(By) N W;2P(By), respectively, of

C

PT(D*u) + p|Du| < f in By, and P~(D%*v) — p|Dv| > f in By,
u=0 on 0B, v=0 on JdB;.

Moreover, we have the following estimates: for w = u or w = v, and small
§ € (0,1), there is C = C(A, A\, n, p,d) > 0 such that

||w||W2’p(Bg) < C&Hf“Lp(Bl).
Remark. In view of the proof (Step 2) of Proposition 6.2, we see that
_C||f7||Ln(Bl) <w< C||f+||Ln(B1) in By, where w = u,v.

6.3 Harnack inequality

In this subsection, we often use the cube Q. (z) forr > 0 and x ='(zy,...,x,) €
R";

Qr(x) ={y ="y, un) | |lzi —ys] <r/2fori=1,...,n},
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and @, := Q,(0). Notice that
Byjs(x) C Qr(v) C B, jmje(x) for r > 0.
We will prove the next two propositions in Appendix.

Proposition 6.4. (Weak Harnack inequality) For p > 0, there are py =
po(A, A, n, ) >0 and Cy := C\(A, A\, n, 1) > 0 such that if u € C(By ) is a
nonnegative LP-viscosity supersolution of

PH(D?u) + plDu| > 0 in By,
then we have

||u||LP0(Q1) S Cl inf w.
Q12

Remark. Notice that py might be smaller than 1.

Proposition 6.5. (Local maximum principle) For p > 0 and ¢ > 0,
there is Cy = Cy(A, X\, n, 11, q) > 0 such that if u € C (B, 5) is an LP-viscosity
subsolution of

P~ (D*u) — p|Du| <0 in By s,

then we have
sgpu < Collu™|La(Qy)-
1

Remark. Notice that we do not suppose that u > 0 in Proposition 6.5.

6.3.1 Linear growth

The next corollary is a direct consequence of Propositions 6.4 and 6.5.

Corollary 6.6. For 1 > 0, there is C3 = C3(A, A\, n, ) > 0 such that if
u € C(B,,/;) is a nonnegative LP-viscosity sub- and supersolution of

P~ (D*u) — p|Du| <0 and PT(D*u)+ p|Du| >0 in By,
respectively, then we have

supu < Cyinf u.
o} Q1
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In order to treat inhomogeneous PDEs, we will need the following corol-
lary:

Corollary 6.7. For y > 0 and f € LP(Bs) with p > n, there is
Cy = Cy(A, X\, n,p) > 0 such that if u € C(Bsz) is a nonnegative LP-
viscosity sub- and supersolution of

P (D) = ulDu| < f and P*(Du)+puDul > f in By,

respectively, then we have

sgpu <C, (mfu—l— | fll e Bgﬁ)> :
1

Proof. According to Proposition 6.3, we find v, w € C(Bsz)W (Bs )

such that
PH(D%*v) + p|Dv| < —f* a.e. in By s,
v=0 on dB; s,

and
P~ (D*w) — p|Dw| > f~ a.e.in By s,
w=0 ondB; /.

In view of Proposition 6.3 and its Remark, we can choose C' = C’(A, A,y ) >
0 such that

0< —v < Clf e, 0 Bsyms  0llwons, ) < CIF oo, 0
and
0<w<Clf llesym 0 Bsym,  Nwllwons, ) < ClUF Mo, -

Since v, w € WQ”’(BQ\/E), it is easy to verify that u; := u + v and
ug = u + w are, respectively, an LP-viscosity sub- and supersolution of

P~ (D’ui) — p|Duy| <0 and  PT(D*us) + p|Dus| >0 in By 7.

Since v < 0 in Bj 4, applying Proposition 6.5 to uy, for any ¢ > 0, we find
C5(gq) > 0 such that

sup u <SlleU1+C||f lLr(B, =)

Q1
< o))" lzac@a) + ClF oy m) (6.13)
< Cao(@)llulla@n) + ClLF Ny -
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On the other hand, applying Proposition 6.4 to us, there is pg > 0 such
that

||u||L1’0(Q2) S ||U2||L1’0(Q2) S Cl léllf’lLQ S Cl <16511fu+ C||f_||Lp(B3ﬁ)> . (614)

Therefore, combining (6.14) with (6.13) for ¢ = py, we can find Cy > 0 such
that the assertion holds. O

Corollary 6.8. (Harnack inequality, final version) Assume that (6.10),
(6.11) and (6.12) hold. If u € C(Q) is an LP-viscosity solution of (6.1), and
if By sy (z) C €2 for r € (0, 1], then

sup u < Cy | inf u+r>"> ,
QT(I;) = (Qr(x) ”f”Lp(Q)>
where Cy > 0 is the constant in Corollary 6.7.

Proof. By translation, we may suppose that x = 0.

Setting v(z) := u(rz) for x € By, /;, we easily see that v is an LP-viscosity
subsolution and supersolution of

P~(D*v) — p|Dv| < r?f and PH(D*) + p|Dv| > —r?f, in Bs i,

respectively, where f(z) := f(rz). Note that ||f||Lp(B3ﬁ) = T_%||f||LP(B3ﬂT)-
Applying Corollary 6.7 to v and then, rescaling v to u, we conclude the
assertion. 0O

6.3.2 Quadratic growth

Here, we consider the case when ¢ — F(z, ¢, X) has quadratic growth. We
refer to [10] for applications where such quadratic nonlinearity appears.

We present a version of the Harnack inequality when F' has a quadratic
growth in Du in place of (6.12);

there is p > 0 such that |F(z,q, X) — F(z,q¢', X)| (6.15)
<pu '

(lg| +1d'|)lg — ¢'| for (z,q,¢',X) € 2 x R" x R" x S™,
which together with (1) of (6.10) implies that

F(2,q,0) < ulg” for (z,q) € @ x R™.
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The associated Harnack inequality is as follows:

Theorem 6.9. For p > 0 and f € LP(Bs ) with p > n, there is
Cs = Cs(A, A\, n,p) > 0 such that if u € C(Bs,y) is a nonnegative LP-
viscosity sub- and supersolution of

P~ (D*u) — p|Dul* < f and PT(D*u)+ p|Dul*> f in By,

respectively, then we have

supu < CsexM (infu + | fllze(m )) :
Q Q1 e

where M := supp, . U.
n

Proof. Set o := pu/A. Fix any ¢ € (0,1).
We claim that v := e* — 1 and w := 1 — e”*" are, respectively, a non-
negative LP-viscosity sub- and supersolution of

P~ (D*v) < a(e™ +6)f" and PH(D*w) > —a(l1+6)f" in By

We shall only prove this claim for v since the other for w can be obtained
similarly.

Choose ¢ € W/li’f(B?)\/ﬁ) and suppose that u— ¢ attains its local maximum
at x € Bj, ;. Thus, we may suppose that v(z) = ¢(z) and v < ¢ in B,(z),
where By, () C B ;. Note that 0 < v < e*™ —1in By .

For any § € (0,1), in view of WP(B,(z)) C C°(B,(r)) with some
ao € (0,1), we can choose gy € (0,7) such that

—§<¢p<wv+d in B.(z).

Setting v (y) := a tlog(é(y) + 1) for y € B.,(z) (extending ¢» € W?P in
B; m \ B.,y () if necessary), we have

limess inf (P*(D%) — p|Dy)? — f+) <0.

e—0 B.(z)

Since Do D2¢ Dé® Do
_ 2, _ _

Do=ory ™ PSS a0
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the above inequality yields

~(D%9)
lli%ess B1:1f (m — f+> <0.

Since 0 <1—-0<¢+1<e*™ +46in B, (), we have

limess inf (P_(D2d>) — afe™™ + 5)f+) <0

e=0  B.(z)

Since au < v < aue®™ and aue ™ < w < au, using the same argument
to get (6.13) and (6.14), we have

1
supu < swpw < Co {ellsoign + (€ +0)1F om0}
1 1
< Cr{e M il + (¥ + 0) 1 o, m }
< Cy {ew i+ (Y + )| oo, }

< Coea Lintu+ (14 )iy}

Since C, (k =6,...,9) are independent of § > 0, sending § — 0, we conclude
the proof. O

Remark. We note that the same argument by using two different trans-
formations for sub- and supersolutions as above can be found in [14] for
uniformly elliptic PDEs in divergence form with the quadratic nonlinearity.

6.4 Holder continuity estimates

In this subsection, we show how the Harnack inequality implies the Holder
continuity.

Theorem 6.10. Assume that (6.10), (6.11) and (6.12) hold. For each
compact set K C Q, there is o = o(A, A\, n, p,p, dist(K,09Q), || fl|r) €
(0,1) such that if u € C(Q2) is an LP-viscosity solution of (6.1), then there is
C = C(A X\ n, p, p, dist(K, 09), maxg |ul, || || zr@) > 0

u(z) —u(y)| < Clz —y|” forz,y € K.

Remark. We notice that o is independent of supg, |u].
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In our proof below, we may relax the dependence maxg |u| in C by
sup{|u(x)| | dist(z, K) < e} for small ¢ > 0.

Proof. Setting ry := min{1,dist(K,9Q)/(3y/n)} > 0, we may suppose
that there is Cy > 1 such that if w € C'(Q) is a nonnegative LP-viscosity
sub- and supersolution of

P~ (D*w) — p|Dw| < f and P (D*w) + p|Dw|> f in Q,

respectively, then we see that for any r € (0,7¢] and v € K (i.e. By s, (7) C
Q),

sup w < Oy | inf w+r27% .
QT(I;) = (Qr(x) Hf“Lp(Q)>

For simplicity, we may suppose r =0 € K.
Now, we set

M(r) := sgp u, m(r):= 1qr)17fu and osc(r) := M(r) —m(r).

It is sufficient to find C' > 0 and o € (0, 1) such that
M(r) —m(r) < Cr? for small r > 0.

We denote by S(r) the set of all nonnegative w € C(Bjz,), which is,
respectively, an IP-viscosity sub- and supersolution of

P~ (D*w) — p|Dw| < |f| and P (D*w)+ ulDw| > —|f| in By m,.

Setting vy := u—m(r) and w; := M(r) — u, we see that v; and w; belong
to S(r). Hence, setting C' := max{Cy||f||1r@), C1, 4} > 3, we have

sup v < Chp (inf o +r2_%> and supw; < Chy (inf w +r2_%> .
Qr/z Q"‘/Q Qr/2 Qr/2

Thus, setting g := 2 — % > 0, we have
M(r/2) = m(r) < Ci (m(r/2) = m(r) + (r/2)°),
M(r) = m(r/2) < Cio (M(r) = M(r/2) + (r/2)°).
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Hence, adding these inequalities, we have
(Cho + 1)(M(r/2) — m(r/2)) < (Cro — 1)(M(r) — m(r)) + 2C1o(r/2)".

Therefore, setting 0 := (C19—1)/(Cio+1) € (1/2,1) and Cyy := 2C10/(Cro+
1), we see that
osc(r/2) < fosc(r) 4+ Oy (r/2)".

Moreover, changing r /28! for integers k > 2, we have

k
osc(r/2%) < OFosc(r) + Cyr? Y 2771
!
< gkOSC(To) + 28 1 lrﬁ < 012(9k + 7“5),
where C'q := max{osc(rg), C11/(2° — 1)}.
For r € (0,79), by setting s = r®, where a = log8/(log0— [ log2) € (0,1),
there is a unique integer £ > 1 such that

which yields
log(s/r) _ . _ log(s/7)

< 1.
log2 — log 2 *

Hence, recalling 6 € (1/2,1), we have
0sc(r) < osc(s/27") < Crp(6" + (25)7) < 2°Ch, (07 087/ 1082 4 P2

Setting 0 := (o — 1) log#/log2 € (0, 1) (because # € (1/2,1)), we have

0(0#1)103;7‘/103;2 —r° and rﬁa — .

Thus, setting C'5 := 2°C',, we have
osc(r) < Cygr?. O (6.16)

Remark. We note that we may derive (6.16) when p > n/2 by taking
g=2-— % > 0.

We shall give the corresponding Holder continuity for PDEs with quadratic
nonlinearity (6.15). Since we can use the same argument as in the proof of

90



Theorem 6.1 using Theorem 6.9 instead of Corollaries 6.7 and 6.8, we omit
the proof of the following:

Corollary 6.11. Assume that (6.10), (6.11) and (6.15) hold. For each
compact set K C Q, there are C = C’(A, A, n, i, p, dist(K, 09), supg, |u]) > 0
and o = o(A, A\, n, u,p,dist(K,00),supg |u|) € (0,1) such that if an LP-
viscosity solution u € C(Q) of (6.1), then we have

u(z) —u(y)| < Clz —y|” forz,y € K.

Remark. Note that both of o and C' depend on supg, |u| in this quadratic
case.

6.5 Existence result

For the existence of LP-viscosity solutions of (6.1) under the Dirichlet condition,
we only give an outline of proof, which was first shown in a paper by Crandall-
Kocan-Lions-Swiech in [7] (1999).

Theorem 6.12. Assume that (6.10), (6.11) and (6.12) hold. Assume also that
(1) of (5.17) holds.
For given g € C(09), there is an LP-viscosity solution u € C(Q) of (6.1) such
that
u(z) = g(z) for z € 9. (6.17)

Remark. We may relax assumption (1) of (5.17) so that the assertion holds for
Q which may have some “concave” corners. Such a condition is called “uniform
exterior cone condition”.

Sketch of proof.
Stepl: We first solve approximate PDEs, which have to satisfy a sufficient
condition in Step 3; instead of (6.1), under (6.17), we consider

Fy.(x, Du,D?u) = f;, in Q, (6.18)

where “smooth” Fj, and fj; approximate F' and f, respectively. In fact, Fj, and f;
are given by F'x p; /. and f *p; ., where p; ;. is the standard mollifier with respect
to z-variables. We remark that F  p;/, means the convolution of F(-,p, X) and

P1/k-
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We find a viscosity solution ux € C(Q2) of (6.18) under (6.17) via Perron’s
method for instance. At this stage, we need to suppose the smoothness of 92 to
construct viscosity sub- and supersolutions of (6.18) with (6.17). Remember that
if ' and f are continuous, then the notion of LP-viscosity solutions equals to that
of the standard ones (see Proposition 2.9 in [5]).

In view of (1) of (5.17) (i.e. the uniform exterior sphere condition), we can

construct viscosity sub- and supersolutions of (6.18) denoted by & € USC(Q2) and
n € LSC(Q) such that ¢ =n = g on 9Q. To show this fact, we only note that we
can modify the argument in Step 1 in section 7.3.

Step 2: We next obtain the a priori estimates for u; so that they converge to
a continuous function u € C'(Q), which is the candidate of the original PDE.

For this purpose, after having established the L estimates via Proposition
6.2, we apply Theorem 6.10 (interior Holder continuity) to uj in Step 1 because
(6.10)-(6.12) hold for approximate PDEs with the same constants A, A, p.

We need a careful analysis to get the equi-continuity up to the boundary 9€2.
See Step 1 in section 7.3 again.

Step 3: Finally, we verify that the limit function u is the LP-viscosity solution
via the following stability result, which is an LP-viscosity version of Proposition
4.8.

To state the result, we introduce some notations: For By,(z) C Q with r > 0

and z € Q, and ¢ € W>P(B,.(z)), we set

Grldl(y) = Fi(y, Dd(y), D*d(y)) — fr(y),

and

Gl#l(y) :== F(y, Dg(y), D*¢(y)) — f(y)
for y € B, (x).

Proposition 6.13. Assume that Fj, and F satisfy (6.10) and (6.12) with
A A>0andp > 0. For f, fr € LP(Q2) withp > n, let up € C(Q) be an LP-viscosity
subsolution (resp., supersolution) of (6.18). Assume also that uj converges to u

uniformly on any compact subsets of Q as k — oo, and that for any By,(z) C Q
with r > 0 and = € Q, and ¢ € W?P(B,(z)),

Jim [[(Glg] = Gil) "l (B, @) = 0

(resp., klggo 1(Glp] = Grld]) ™ (B () = 0) :

Then, u € C(Q) is an LP-viscosity subsolution (resp., supersolution) of (6.1).
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Proof of Proposition 6.13. We only give a proof of the assertion for subsolu-
tions.

Suppose the contrary: There are 7 > 0, ¢ > 0, z € Q and ¢ € W2P(By,(x))
such that Bz, (z) C Q, 0= (u— ¢)(z) > (u — ¢)(y) for y € Ba,(z), and

u—¢ < —e in By (z)\ Br(z), (6.19)

and
G[pl(y) > e a.e. in By (). (6.20)

For simplicity, we shall suppose that + =1 and = = 0.
It is sufficient to find ¢, € W2P(By) such that limy_,, supp, |¢x| = 0, and

Grlo+ ¢i](y) > € a.e. in By.

Indeed, since ur — (¢ + @) attains its maximum over B, at an interior point
z € By by (6.19), the above inequality contradicts the fact that wuy is an LP-
viscosity subsolution of (6.18).

Setting h(z) := G[¢|(z) and hy(x) := Gg[¢](z), in view of Proposition 6.3, we
can find ¢y, € C(Bg) N W,2P(By) such that

oc

P~ (D%¢y) — u|Doi| > (h — b))t a.e. in By,
o =20 on 0Bs,
0 < ¢ < CO(h —hi) ey in By,
¢k llw2e(s) < Cll(h = he)tllze(sy)-

We note that our assumption together with the third inequality in the above yields

limg o0 SUD 3, |65] = 0.
Using (6.10), (6.12) and (6.20), we have

Gild + ¢kl > P~ (D*¢r) — p| D] + I

> (h— hi)*+e— (h — hy)
>¢ a.e.in By, O
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7 Appendix

In this appendix, we present proofs of the propositions, which appeared in the
previous sections. However, to prove them, we often need more fundamental
results, for which we only give references. One of such results is the following
“Area formula”, which will be employed in sections 7.1 and 7.2. We refer to
[9] for a proof of a more general Area formula.

Area formula

e C'(R",R"),
ge VRN, p= [ lgldy < [ lo(e(x))lldet(DE())dr
A C R"™ measurable

We note that the Area formula is a change of variable formula when
|det(DE)| may vanish. In fact, the equality holds if |det(D&)| > 0 and £ is
injective.

7.1 Proof of Ishii’s lemma

First of all, we recall an important result by Aleksandrov. We refer to the
Appendix of [6] and [10] for a “functional analytic” proof, and to [9] for a
“measure theoretic” proof.

Lemma 7.1. (Theorem A.2 in [6]) If f : R" — R is convex, then for
a.a. v € R", there is (p, X) € R" x S™ such that

1
flx+h)=f(x)+(p,h)+ §(Xh, hy 4+ o(|h]?) as |h| — 0.
(i.e., f is twice differentiable at a.a. x € R".)

We next recall Jensen’s lemma, which is a version of the ABP maximum
principle in 7.2 below.

Lemma 7.2. (Lemma A.3 in [6]) Let f : R — R be semi-convex
(i.e. v = f(x) + Cp|z|* is convex for some Cy € R). Let & € R" be a strict
maximum point of f. Set f,(x) = f(x) — (p,z) for x € R" and p € R".

Then, for r > 0, there are Cy,dq > 0 such that

T, 5] > C0"  for d € (0, ),
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where

Ths = {z € B.(2)

dp € B; such that f,(y) < f,(z) for y € B,(Z) } :

Proof. By translation, we may suppose z = 0.

For integers m, we set f™(x) = f % p1/m(x), where p;/p, is the mollifier.
Note that z — f™(x) + Cy|z|? is convex.

Setting

rm={zeB,

Jp € Bs such that f"(y) < f,"(x) for y € B, } :

where f"(z) = f™(x)—(p, z), we claim that there are C', dp > 0, independent,
of large integers m, such that

7 > Cy6™ for § € (0,6].

We remark that this concludes the assertion. In fact, setting A,, := U2, . I'% 5,
we have N®_, A, C I',5. Because, for x € N%°_, A,,, we can select pj, € B
and my, such that limy_,,, m; = oo, and
max f't = f(z).

B:
Hence, sending k& — oo (along a subsequence if necessary), we find p € Bs
such that maxg f; = f3(v), which yields x € I, 5.

Therefore, we have

C1o" < Jim Al = [0, Al < [yl

Now we shall prove our claim. First of all, we notice that + — f™(z) +
Cylx|? is convex.
Since 0 is the strict maximum of f, we find £y > 0 such that

g0 = f(0) —_max f.
Bar/3\Byrs

Fix p € B;,, where &, = £¢/(3r). For m > 3/r, we note that

F(x) — (pa) < F(0) — 20+ g1 < F(0) — ? in B, \ Bays.
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On the other hand, for large m, we verify that
_ €
Fm(0) = f(0) — wy(m™") > f(0) - 50

where w; denotes the modulus of continuity of f. Hence, in view of these
observations, for any p € Bs,, if maxg f;" = f"(z) for x € B,, then z € B,.
In other words, we see that

By = Df™(T7) for 6 € (0,5).

Thanks to the Area formula, we have
Bl = [ dy< [ |detD?f"|dr < (2Co)" |7,
Dfm(rm) T ’
Here, we have employed that —2CoI < D*f™ <O in I} O

Although we can find a proof of the next proposition in [6], we recall the
proof with a minor change for the reader’s convenience.

Proposition 7.3. (Lemma A4 in [6]) If f € C(R™), B € S™, { —

f(&) + (A/2)[€]? is convex and maxeerm{f(§) — 27 (BE, &)} = f(0), then
there is an X € S™ such that

0,X) e 7TF(0)NT?"f(0) and — N <X < B.

Proof. For any § > 0, setting f5(&) := f(£) —27(BE, &) — §|£[%, we notice
that the semi-convex f5 attains its strict maximum at & = 0.

In view of Lemmas 7.1 and 7.2, there are &s,qs € Bs such that £ —
f5(6) + (g5, €) has a maximum at &, at which f is twice differentiable.

It is easy to see that Df(&) — 0 (as § — 0) and, moreover, from the
convexity of & — f(&) + (A/2)[¢]%,

—M < D*f(&) < B+ 261.

Noting (Df(&5), D*f(&5)) € J>T f(&) N J* f(&), we conclude the assertion
by taking the limit as § — 0. O

We next give a “magic” property of sup-convolutions. For the reader’s
convenience, we put the proof of [6].
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Lemma 7.4. (Lemma A.5 in [6]) For v € USC(R") with supgr v < 00
and \ > 0, we set

(6= sup (060) - 3o - ).

zeR™

Forn,q e R",Y € S", and (¢,Y) € J**0(n), we have

2
(@.¥) € Pl +37g) and in) + L = oy + x7Tg)

In particular, if (0,Y) € 72’+®(0), then (0,Y) € 72’+v(0).
Proof. For (¢,Y) € J*"(n), we choose y € R" such that
. A
o(n) = v(y) = ly =l

Thus, from the definition, we see that for any z,£ € R",

A
o) - SlE—aP < 0(©) <

5
—

N = NP3

o~ — o~ ~—

+{a,{—n)
Y(&—n),&—n)+o(l¢ —nl*)
- %|y—77|2 +(¢, & —n)
Y(€—=n),&—n) +o(lg —nl).

[
=+

+

Taking £ = x — y + 1 in the above, we have (¢,Y) € J>Tv(y).
To verify that y = n+ A "!q, putting z =y and € = n—e(\(n — y) +q)
for £ > 0 in the above again, we have

elA(n —y) +ql* < o(e),

which yield y =n + %q.

When (0,Y) € 72’+7§(0), we can choose (M, gk, Yx) such that limg_, o0 (9, (%), Gk, Yi) =
(0,9(0),0,0), and (qx, i) € J>T0(n). Since (qx, Vi) € J>Tv(n, + X 'qr)
and () + (2A) 7' agx* = v + A7 'qr), sending k — oo, we have (0,Y) €
T w(0). O
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Proof of Lemma 3.6. First of all, extending upper semi-continuous func-
tions u,w in Q into R"” by —oo in R" \ ), we shall work in R" x R" instead
of O x Q.

By translation, we may suppose that 2 = 5 = 0, at which u(x) + w(y) —
é(x,y) attains its maximum.

Furthermore, replacing u(z), w(y) and ¢(x,y), respectively, by

u(@) — u(0) = (Dz$(0,0),2),  w(y) —w(0) = (Dye(0,0),y)
and
qs(l‘a y) - ¢(07 0) - <D$¢(07 O)vl‘> - <qu§(0, 0)7 y>7
we may also suppose that ¢(0,0) = «(0) = w(0) =0 and D¢(0,0) = (0,0) €
R" x R". 4
Since ¢(z,y) = <§ ( . ) , ( . >>+0(|:1:|2—|—|y|2), where A := D?¢(0,0) €

Y Y
for each n > 0, we see that the mapping (z,y) — u(z) + w(y) —

< (A+nI) < ) : < ;j >> attains its (strict) maximum at 0 € R*".

We will show the assertion for A+nl in place of A. Then, sending n — 0,
we can conclude the proof. Therefore, we need to prove the following:

n

Simplified version of Ishii’s lemma.
For upper semi-continuous functions v and w in R", we suppose that
A
u(z) 4+ w(y) — <5 ( i ) , ( i >> < u(0) +w(0) = 0 in R” x R™,
Then, for each p > 1, there are X, Y € S™ such that (0, X) € 72’+u(0),

- I O X O 1
0,Y) € 77 w(0) and —(u + || A ( )g( >§A+—A2.
(0,Y) (0) (w+1AD\ 5 7 0 v .

Proof of the simplified version of Lemma 3.6. Since Holder’s inequality im-

plies
00 = (b= ()-(0)
() () 2 n n
e+ ANz = €7 + 1y —nf)
for z,y,&,m € R™ and p > 0, setting A = p + ||A||, we have

o)~ gle—e e =gt < 5 (4450 (5)-(5))
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Using the notation in Lemma 7.4, we denote by @ and w the sup-convolution
of u and w, respectively, with the above A > 0. Thus, we have

a(g)+m(n)§%<<A+%A2> <§><§>> for all &,n € R".

Since 4(0) > u(0) = 0 and @w(0) > w(0) = 0, the above inequality implies
u(0) = w(0) = 0.

In view of Proposition 7.3 with m = 2n, f(¢, ) (&) + w(n) and
B = A+ p~'A?% there is Z € S*" such that (0, 2) € 7 T £(0,0) nJ> ~ f(0,0)
and -\ < Z < B.

Hence, from the definition of 72’i, it is easy to verify that there are X, Y €

S™ such that (0, X) € 771 a4(0)nT>"a(0), (0,Y) € T i(0)nT>"w(0), and
X O
Z- ( r o ) .

Applying the last property in Lemma 7.4 to u and w, we see that

(0,X) € 77 u(0) and (0,Y) e T w(0). O

7.2 Proof of the ABP maximum principle

First of all, we remind the readers of our strategy in this and the next sub-
sections.

We first show that the ABP maximum principle holds under f € L™(Q)N
C(€) in Steps 1 and 2 of this subsection. Next, using this fact, we estab-
lish the existence of LP-strong solutions of “Pucci” equations in the next
subsection when f € L?(Q).

Employing this existence result, in Step 3, we finally prove Proposition
6.2; the ABP maximum principle when f € L™(Q).

ABP maximum principle for f € L™(Q2) N C(2) (Section 7.2)
4

Existence of LP-strong solutions of Pucci equations (Section 7.3)

4
ABP maximum principle for f € L™(€2) (Section 7.2)
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Proof of Proposition 6.2. We give a proof in [5] for the subsolution asser-
tion of Proposition 6.2.

By scaling, we may suppose that diam(Q) < 1.

Setting

To - = maxu — maxu+,
) a9

we may also suppose that ry > 0 since otherwise, the conclusion is obvious.
We first introduce the following notation: For v : Q@ — R and r > 0,

T, := {:1: €N ‘E!p € B, such that u(y) < u(z) + (p,y — x) for y € Q} :
Recalling the upper contact set in section 6.2, we note that
[, Q= |J I
r>0
Step 1: u € C?*(Q2) N C(Q). We first claim that for r € (0, ),

i) B, = Du(T,),
{ (EZ; D%y < O( il)l T,. (7.1)

To show (i), for p € B,, we take # € Q such that u(z) — (p,z) =
max, g(u(z) — (p,z)). Since u(z) — u(&) < r < ry for z € Q, taking the

maximum over €2, we have & € Q. Hence, we see p = Du(&), which concludes
(2)-
For z € I',, Taylor’s formula yields
1
u(y) = u(z) + (Du(z),y — x) + 5 (D*u(z)(y — v),y — ) + olly — ).

Hence, we have 0 > (D?u(z)(y — z),y — z) + o]y — x|?*), which shows (7).
1-n
Now, we introduce functions g, (p) := (|p|"/(”’1) + H"/(”’l)) for k > 0.
We shall simply write g for g,.
Thus, for r € (0,7), we see that

[ gwdp< [ g(Du(@))ldet(D*u(2))|ds
Du(T,) T» -
— / (|Du|”/("’1)+m"/(”’1)) |det D*u(x)|dx.
Ly

Recalling (7.1), we utilize |detD?*u| < (—trace(D?u)/n)" in T, to find
C > 0 such that

/ g(p)dp < C’/ (|Du|"/("71) + /i"/("fl))lin (—trace(D*u))"dz.  (7.2)
B, r,
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Thus, since (p|Du|+ f)" < g(Du)~' (™ +x"(fT)") by Hélder’s inequality,

e /Brg( dp < C/ (u + (f) )d:c. (7.3)

On the other hand, since (|p|" + x")~" < g(p), we have

n |
og ((5) +1) <[ ———dav<c [ g@ap
K B, |p|” + K" B,

Hence, noting ', C Q7 [u] for r € (0,79), by (7.3), we have

oo (f>> ar} -1 ]/ (7.4)

When || f*||nrpojne+w) = 0, then sending £ — 0, we get a contradiction.
Thus, we may suppose that || f*|| zn(rpono+w) > 0.

Setting & = || f*||Lr 0100t and r = ro/2, we can find C > 0,
independent of u, such that ro < C||f*|| zr(rju0no+w)-

r <k

Remark. We note that we do not need to suppose f to be continuous in
Step 1 while we need it in the next step.

Step 2: u € C(Q2) and f € L™(Q) N C(Q). First of all, because of f €
C(€2), we remark that u is a “standard” viscosity subsolution of

P~ (D*u) — p|Du| < f in QF[u].

(See Proposition 2.9 in [5].)
Let u® be the sup-convolution of u for £ > 0;

(o) i=sup ) - 2R

Note that u° is semi-convex and thus, twice differentiable a.e. in R".
We claim that for small € > 0, u® is a viscosity subsolution of

P~ (D*u) — p|Duf| < f¢ in Q., (7.5)
where f2(z) == sup{fT(y) | |z — y| < 2(||ullz=@e)"?} and Q. = {z €
Q*[u] | dist(z, 02T [u]) > 2(||ul|=@)e)"/?}. Indeed, for x € Q. and (¢, X) €
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J?*uf (), choosing & € Q such that u®(z) = u(z) — (2¢)~!x — 2|?, we easily

verify that |¢| = 72 — 2] < 2y/|Jul|p~()/e. Thus, by Lemma 7.4, we see
that (¢, X) € J>Tu(x 4+ £q). Hence, we have

P(X) = plal < fT(x +eq) < ().

We note that for small € > 0, we may suppose that

r¢ := max u® — max(u®)t > 0. (7.6)

Q. 00
Here, we list some properties on upper contact sets: For small 5 > 0, we

set
Q° .= {z € Q| dist(x,0Q) > 6}.

Lemma 7.5. Let vs € C(QJ) and v € C(Q) satisfy that v; — v uniformly
on any compact sets in 2 asd — 0. Assume that i := maxg v—maxsq vt > 0.
Then, for r € (0,7), we have the following properties:

( (1) T.[v,Qlis a compact set in QF[v],

(2) limsupT,[vs, Q] C T'[v, Q]
0—0
q (3) for small o > 0, there is d,such that Up<s<s, Iy [vs, Q%) c Te,

where 1% := {z € Q | dist(z,T,[v,Q]) < a},
(4) zp € Q% — x € Q as k — oo, then, lilgn inf v, () < v(z).
—00

Proof of Lemma 7.5. To show (1), we first need to observe that for r €
(0,7), dist(T'y[v, 2], 00) > 0. Suppose the contrary; if there is zy € T',[v, Q]
such that 7, € Q — 2 € 09, then there is p, € B, such that v(y) <
v(x) + (pr, y — ) for y € Q. Hence, sending k — oo, we have

maxv — maxv’ <7 < 7,
Q B

which is a contradiction. Thus, we can find a compact set K C () such that
I v,Q] C K.
Moreover, if v(z) < 0 for z € T',[v, ], then we get a contradiction:

7 <maxv <r <TrT.
Q
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Next, choose z € limsup;_,, T, [vs,°]. Then, for any k > 1, there are
dx € (0,1/k) and py € B, such that

Vs, (y) < s, (x) + (pk,y - 3?> for y € Q%

We may suppose p; — p for some p € B, taking a subsequence if necessary.
Sending k — oo in the above, we see that = € T',[v, Q).

If (3) does not hold, then there are ag > 0, 0, € (0,1/k) and x), €
[, [vs,, Q%] \FO‘O We may suppose again that limy_,., 7, = % for some & € Q.
When 2 € 09, since there is py € B, such that vs, (y) < vs, (vx) + (pr, ¥y — k)
for y € €, we have 7 < 7, which is a contradiction. Thus, we may suppose
that # € Q and, then # € [',[v,Q]. Thus, there is ky > 1 such that z;, € [%
for k > kg, which is a contradiction. O

For ¢ > 0, we set uj := u® x ps, where p; is the standard mollifier. We set
120 =T, [uf, Q] for r € (0,75), where 7§ := maxg_u§ —maxaq, (uz)". Notice
that for small § > 0, r§5 > 0.

In view of the argument to derive (7.2) in Step 1, we have

/ g(p)dp < C’/ﬁms (|Du§|n/("_1) + H"/("_l))lin (—trace(D?u5))"dx
for small r > 0.

Also, by the same argument for (i) in (7.1), we can show that D?u§(z)
O in 9. Furthermore, from the definition of u°, we verify that —e~'J
D?uj(x) in Q..

Hence, sending § — 0 with Lemma 7.5 (3), we have

<
<

/ g(p)dp < C'/ |Du5|”/("71) + f@"/("fl))lin (—trace(D*uf))"dx
[u® Q]

r <c/ o (u +<f8>>da:.

Therefore, sending ¢ — 0 (again with Lemma 7.5 (3)), we obtain (7.4), which
implies the conclusion.

Remark. Using the ABP maximum principle in Step 2 (i.e. f € C(Q)), we

can give a proof of Proposition 6.3, which will be seen in section 7.3. Thus,
in Step 3 below, we will use Proposition 6.3.
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Step 3: u € C(Q) and f € L™(2). Let fr € C(2) be nonnegative func-
tions such that || fy — fT||rn@) = 0 as k — oo.
In view of Proposition 6.3, we choose ¢, € C'(Q) N W2 (Q) such that

PH(D%*pr) + p|Dog| = fr — f+ a.e. in Q,
¢r =0 on 01,
[BkllL(@) < Cllfi = T lLne-

Setting wy := w4 ¢r — ||Pkl| Lo (), We easily verify that wy is an L"-viscosity
subsolution of
P~ (D*wy) — p|Dwy| < fr  in Q.

Note that QF [wg] C QF[ul.
Thus, by Step 2, we have

max wy, < maxw + O (fi)™ e, fun aineu)-

Therefore, sending k& — oo with Lemma 7.5 (2), we finish the proof. O

7.3 Proof of existence results for Pucci equations

We shall solve Pucci equations under the Dirichlet condition in 2. For sim-
plicity of statemants, we shall treat the case when € is a ball though we will
need the existence result in smooth domains later. To extend the result for
general 2 with smooth boundary, we only need to modify the function v* in
the argument below.

For > 0 and f € LP(By) with p > n,

P~ (D*u) — p|Dul > f in By, (7.7)
u=0 on 0By, '
and
PH(D?*u) + p|Du| < f in By, (7.8)
u=20 on 0B;. '

Note that the first estimate of (7.10) is valid by Proposition 6.2 when the
inhomogeneous term is continuous.

Sketch of proof. We only show the assertion for (7.8).

Step 1: f € C*(B;). We shall consider the case when f € C*®(B,).
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Set Sya == {A = (4;;) € S" | A\] < A < AI}. We can choose a countable
set Sp := {A* := (AF) € Sxa}72, such that Sy = Syz.

Noting that ulg| = max{(b,q) | b € 0B,} for ¢ € R", we choose By :=
{b* € 0B, }32, such that By = 0B,,.

According to Evans’ result in 1983, we can find classical solutions u €
C(Q) N C?(Q) of

_ k2 k _ o
kirllaXN{ trace(A*D*u) + (b ,Du)} f in By, (7.9)
uw=0 on 0B;.
Moreover, we find o = o(¢) € (0,1), C. > 0 (for each ¢ € (0,1)) and C; > 0,
which are independent of N > 1, such that

le¥ ey < Coll fllznsy and (¥ |lcroqpy < Cee (7.10)

Note that the first estimate of (7.10) is valid by Proposition 6.2 when the
inhomogeneous term is continuous.
More precisely, by the classical comparison principle, Proposition 3.3, we

have
u™ <u' in By. (7.11)
Furthermore, we can construct a subsoluion of (7.9) for any N > 1 in
the following manner: Fix z € 0B;. Set v*(x) := afe P1#- 2" — ¢~F) where
a, > 0 (independent of z € dBy) will be chosen later. We first note that
v?(2) = 0 and v*(z) < 0 for x € B).
Setting LFw(x) := —trace(A¥ D?>w(x)) + (b*, Dw(z)), we verify that

LFv*(x) < 2afe Plr=22P (A — 26|z — 222 + plz — 22|)
< 2aBe % (An — 2B\ + 3p).

Thus, fixing 8 := (An+3p+1)/(2)), we have LFv*(z) < —2a8e 9. Hence,
taking o > 0 large enough so that 2ae % > || f||r(p,), we have

k,z :
k:rlr’lf-}-c-’NL v¥(x) < f(x) in By.

Now, putting V' (z) := sup,cyp, v*(x), in view of Theorem 4.2, we see that
V' is a viscosity subsolution of

k . .
k:rlr}%}.c.’NL u(z) — f(z) <0 in By.
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Moreover, it is easy to check that V*(z) = 0 for x € 0B;. Thus, by Proposi-
tion 3.3 again, we obtain that

V <u in By, (7.12)

Therefore, in view of (7.10)-(7.12), we can choose a sequence N and
u € C?(By) such that limy_,o Ny = 00,

(u™e, Du™*, D*u™¥) — (u, Du, D*u) uniformly in B, _.

for each € € (0, 1), and
V<u<u' inB. (7.13)

We note that (7.13) implies that u* = u, on 0B;.
By virtue of the stability result (Proposition 4.8), we see that u is a
viscosity solution of

PH(D*u) + p|Du|— f =0 in By

since supys{—trace(A*X) + (b*,p)} = PT(X) + u|p|. Hence, Theorem 3.9
yields u € C(B;).

Therefore, by Proposition 2.3, we see that u € C(B;) N C?(B,) is a
classical solution of (7.8).

Step 2: f € LP(B;). (Lemma 3.1 in [5]) Choose f; € C*(B;) such that
fe — fllzeo) — 0 as k — oo.

Let uy € C(B;) N C?*(By) be a classical solution of

PH(D*u) + p|Du| — fr =0 in By

such that u, = 0 on 0B;. Proposition 6.2 implies that —C'|| f, || 1»(5,) < ur <
Cllfi le(s,) in By

We first claim that {ug}32, is a Cauchy sequence in L>°(B;). Indeed,
since (1) and (4) of Proposition 3.2 imply that

P (D?(uj — ug)) — p|D(uj — uy)]

PH(D%u;) + P~ (—D?uy) + p|Duj| — p|Duy|
fi— fa

P+ (DPuj) — PH(D?we) + | D(u; — ug)
PH(D*(uj — ug)) + p|D(uj — ug)l,

IANINA A
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using Proposition 6.2 when the inhomogeneous term is continuous, we
have

max [u; — ug| < Cllf; = fillo ).
1
Recalling p > n, we thus have

uj — ukllzoe sy < Cllf5 — felloesy-

Hence, we find v € C(B)) such that u; converges to u uniformly in B; as
k — oo. Moreover, we see that —C'||f~||zr(5,) < u < C||fT||zr(m,) in By.

Therefore, by the standard covering and limiting arguments with weakly
convergence in W?2P locally, it suffices to find C' > 0, independent of k¥ > 1,
such that

[urllw2r(s,,,) < C-

Moreover, we see that —C/||f~||r(g) < u < C||f*||1e(m,) in By.
For € € (0,1/2), we select n :=n. € C?(B;) such that

i) 0<np<1 in B,
i

Z) 7]:0 inBl\Bl,g,
{

11 ) n = 1 in 31,25,
iv) |Dn| < Coe™t, |D?*n| < Che? in By,

(
(
(
(

where Cyy > 0 is independent of € € (0,1/2).
Now, we recall Caffarelli’s result (1989) (see also [4]): There is a universal
constant C' > 0 such that

1D (qu) | zos,—.y < CIPH(D? (1))l o).
Hence, we find C} > 0 such that for 0 < e < 1/4,

1D*ukl|o(Bi—oe) < 1D (nui)llzoBi—.) < ClIPH(D?(ur)) || 1o(5s4)
< Cy (Mfillzoai—ey + 2 Dkl oy + 2 2l o (a1

Multiplying £2 > 0 in the above, we get
2| D*up|eo(my 5oy < Crlll fillzosy) + b1 (ur) + do(ur)),

where ¢;(uy) 1= supg...; o || D ug| o3, .y for j =0,1,2.
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Therefore, in view of the “interpolation” inequality (see [13] for example),
i.e. for any 6 > 0, there is C's > 0 such that

¢1(ur) < 0p2(ur) + Csolus),

we find C'5 > 0 such that

da(ur) < Cs (|| fellnsn) + dolun))

On the other hand, since we have L*>-estimates for u;, we conclude the
proof. O

Remark. It is possible to show that the uniform limit v in Step 2 is
an LP-viscosity solution of (7.8) by Proposition 6.13. Moreover, since it is
known that if LP-viscosity supersolution of (7.8) belongs to W,2"(B;), then

it is an LP-strong supersolution (see [5]), u satisfies P*(D?u) + u|Du| = f(x)
a.e. in Bj.

7.4 Proof of the weak Harnack inequality
We need a modification of Lemma 4.1 in [4] since our PDE (7.14) below has

the first derivative term.

Lemma 7.6. (cf. Lemma 4.1 in [4]) There are ¢ € C?*(B, ) and
¢ € C(By,y) such that

P~(D%) - u|Dd| > —€ in By,
) < =2 for x € Q3,

=0 for z € 0B, /5,
() =0 for v € By 7 \ Bija.

Proof. Set ¢y(r) := A{1 — (24/n/r)*} for A,a > 0 so that ¢q(2y/n) = 0.
Since

{ Déo(|z]) = A(2y/n)*alz|~* "z,
D?go(lz]) = AQ2yn)*alz|~H|z[’] - (o + 2)z @ z},

we caluculate in the following way: At x # 0, we have
P (D*¢o(|zl)) — plDeo(|2])] = A(2v/n)*alz]**{(a + 2)A — nA — plz|}.
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Fig 7.1

Setting o := A" Y(nA + 2uy/n) — 2 so that @ > 0 for n > 2, we see that
the right hand side of the above is nonnegative for = € B, 5 \ {0}. Thus,
taking ¢ € C?(By5) such that ¢(z) = ¢o(|z|) for 2 € B, 5 \ Bijz and
d(z) < ¢o(3y/n/2) for x € By /5, We can choose a continuous function £
satisfying (1) and (4). See Fig 7.1.

Moreover, taking A := 2/{(4/3)* — 1} so that ¢¢(3/n/2) = —2, we see
that (2) holds. O

We now present an important “cube decomposition lemma”.

We shall explain a terminology for the lemma: For a cube Q := Q,(x) with
r > 0and z € R", we call ) a dyadic cube of Q if it is one of cubes {Qr}i,
so that @y, :== Qr/g(fﬁk) for some 71, € Q, and UZ_,Qr C QC U, Q.

Lemma 7.7. (Lemma 4.2 in [4]) Let A C B C @1 be measurable sets
and 0 < ¢ < 1 such that

(a) 4] <6,
(b) Assume that if a dyadic cube Q of Q) C @ satisfies [AN Q| > §|Q)],
then () C B.

Then, |A| < 0|B].

Proof of Proposition 6.4. Assuming that u € C’(FQ\/;L) is a nonnegative
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viscosity supersolution of
P (D*u) + p|Du| >0 in By sz, (7.14)
we shall show that for some constants py > 0 and C; > 0,

|ul| o0,y < Ch inf u.
Q12

To this end, it is sufficient to show that if u € C(B, ;) satisfies that
infg, ,, u < 1, then we have |lw||ro @,y < Cy for some constants poy, Cy > 0.

Indeed, by taking v(x) := u(x) (ianl/2 u+ 5)71 for any 6 > 0 in place of wu,
we have ||v||1p0(g,) < C1, which implies the assertion by sending ¢ — 0.

Lemma 7.8. There are § > 0 and M > 1 such that if u € C(Byz) is a
nonnegative LP-viscosity supersolution of (7.14) such that

infu <1, (7.15)

Qs

then we have
{z € Qi [u(z) <M} >0

Remark. In our setting of proof of Proposition 7.4, assumption (7.15) is
automatically satisfied.

Proof of Lemma 7.8. Choose ¢ € C?(By, /) and £ € C(By, /) from Lemma
7.6. Using (4) of Proposition 3.2, we easily see that w := u + ¢ is an L"-
viscosity supersolution of

P*H(D?w) + ulDw| = —¢ in B,y

Since infg,w < —1 and w > 0 on 0B, 5 by (2) and (3) in Lemma 7.6,
respectively, by Proposition 6.2, we find C > 0 such that

1 < sup(~w) < sup (~w) < Cl€]| (7.16)

—w,B,y ~]NBY _[-w])*
Qs By m w:BaymlN B, ml=w])

In view of (4) of Lemma 7.6, (7.16) implies that

1< Caxell{r e @ | (u+0)(a) <0}
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Since

u(z) < —¢(r) < max(—¢) = M for x € By 4.

S
B

Therefore, setting # = (C supg, [£))™" > 0 and M = suszﬁ(—dﬂ > 2, we
have
0<|{ze@Q |ux) <M} O

We next show the following:

Lemma 7.9. Under the same assumptions as in Lemma 7.8, we have

Hr e Q| ul@) > MY <O-0)F forallk=1,2,...

Proof. Lemma 7.8 yields the assertion for k = 1.

Suppose that it holds for k£ — 1. Setting A := {x € @, | u(z) > M*} and
B:={z € Q| u(x) > M* '}, we shall show |A| < (1 — 6)|B].

Since AC BC Q,and [A| < {z € Q1 |u(zx) > M}| <d:=1-86,in
view of Lemma 7.8, it is enough to check that property (b) in Lemma 7.7
holds.

To this end, let Q@ := Q1,9 (2) be a dyadic cube of Q = Q1/92i-1(2) (for
some z, % € (1 and j > 1) such that

2in

|ANQ| > 0|Q| = (7.17)
It remains to show Q C B.

Assuming that there is Z € Q such that # ¢ B; i.e. u(i) < M* 1.

Set v(z) == u(z 42 7x)/M*! for x € B, 4. Since |7; — z;| < 3/27H, we
see that infg, v < u(z)/M*~! < 1. Furthermore, since 2z € Qy, 2z + 27z €
By 5 for x € By s

Thus, since v is an LP-viscosity supersolution of

P*(D*) + p| Dv| > 0,

Lemma 7.8 yields |{z € @, | v(x) < M}| > 6. Therefore, we have

reQ|u) <My =L —oql
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Thus, we have |@Q \ A| > 0|Q|. Hence, in view of (7.17), we have
QI =1ANQ[+[Q\ A[>6]Q| +0|Q| = |QI,

which is a contradiction. O

Back to the proof of Proposition 6.4. A direct consequence of Lemma 7.9
is that there are C,e > 0 such that

{z €@ |ulz) >t} <Ct™™ fort>0. (7.18)

Indeed, for t > M, we choose an integer k > 1 so that M*+ >t > MPF.
Thus, we have

{z € Qi |u(x) >t} <z €@ |ulx)> M} < (1-0)F <Cot™,

where Cp := (1 — 0)~" and £ := —log(1 — #)/log M > 0.

Since 1 < M¢t¢ for 0 < t < M, taking C' := max{Cy, M*}, we obtain
(7.18).

Now, recalling Fubini’s theorem,

/ uP*(z)dr < uP?(z)dx + 1
1 {2€Qy | u(@)>1)

=po [ "o € Qi | u(@) > tHat+1,
1

(see Lemma 9.7 in [13] for instance), in view of (7.18), for any py € (0,¢), we
can find C(pg) > 0 such that [jul|;r0g,) < C(po). O
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7.5 Proof of the local maximum principle

Although our proof is a bit technical, we give a modification of Trudinger’s
proof in [13] (Theorem 9.20), in which he observed a precise estimate for
“strong” subsolutions on the upper contact set. Recently, Fok in [11] (1996)
gave a similar proof to ours.

We note that we can find a different proof of the local maximum principle
in [4] (Theorem 4.8 (2)).

Proof of Proposition 6.5. We give a proof only when ¢ € (0, 1] because it
is immediate to show the assertion for ¢ > 1 by Holder’s inequality.
Let zy € (); be such that maxg u = u(zo). It is sufficient to show that

~max u < Col|lut||za(B,

B1/4(70) (B (o)
since By/2(29) C Q2. Thus, by considering u((z — x0)/2) instead of u(z), it
is enough to find Cy > 0 such that

max u < Csl|u™||ra(p,).-
1/2

We may suppose that

max u > 0 (7.19)
B

since otherwise, the conclusion is trivial.
Furthermore, by the continuity of u, we can choose 7 € (0,1/4) such that
1—-27>1/2and

max u > 0.
Bi_or

We shall consider the sup-convolution of u again: For ¢ € (0, 7),
3 |‘T B y|2
u*(x) = sup qu(y) — ————¢.
() sup { () = —;

By the uniform convergence of u® to u, (7.19) yields

maxu® >0 for small ¢ > 0. (7.20)
Bl—T

For small € > 0, we can choose ¢ := §(¢) € (0,7) such that lim. ,y6 =0,

and
P~ (D*uf) — p|Duf| <0 a.e. in By_s.
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Putting n°(x) := {(1 — 5)2 _ |x|2}ﬁ for B :=2n/q > 2, we define v¢(x) :=
nf(z)uf(x). We note that

r® := maxv® > 0.
Bi_s
Fix r € (0,7°) and set I'Z := I[',[v®, B;_5]. By (1) in Lemma 7.5, we see
re c By s[vf).
For later convenience, we observe that

Dv®(z) = —2Bxn(x) P V%5 () + n(z) Du® (), (7.21)

D?vf(x) = —28n(x) PV {u ()] + v ® Du(z) + Du‘(z) ® =}
+4B(8 — )n(x) 2P (v)x @ @ + n(r) D*us(z).
Since u® is twice differentiable almost everywhere, we can choose a mea-
surable set N, C Bj_; such that |N.| = 0 and u® is twice differentiable at
x € By 5\ N.. Of course, v is also twice differentiable at = € By 5\ N..
By (7.22), we have

(7.22)

P~ (D*°) < P~ (D%uf) + 280" V/P{Anuf — P~ (2 ® Duf + Duf @ z)}

in B ;[v°]. By using (7.21), the last term in the above can be estimated

from above by
C{n~*P(v*)* + 0~ P |Dv*}.

Moreover, using (7.21) again, we have
P~(D*u) < p|Dut| < ! [ Do |+ O~ (uf) .
Hence, we find C' > 0 such that
P~(D*f) < O~ Y8 Dvf | + OB (v5)t = ¢° in Bi_s\ N..  (7.23)
We next claim that there is C' > 0 such that
|Dv*(z)| < O~ Y8 (x)vf(z) for x € T2\ N.. (7.24)

First, we note that at x € I': \ N, v*(y) < v°(z) + (Dv*(z),y — ) for
y € By s.
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To show this claim, since we may suppose |Dv*(z)| > 0 to get the esti-
mate, setting y := x — tDv®(z)|Dv(z)|"" € OB, s fort € [1 — & — |z|, 1 —
d + |z|], we see that

0=1v"(y) < v°(x) — t|Dv*(z)|,

which implies
|Dve(z)| < Cv(z)p YP(x) in T2\ N.. (7.25)

Here, we use Lemma 2.8 in [5], which will be proved in the end of this
subsection for the reader’s convenience:

Lemma 7.10. Let w € C(Q2) be twice differentiable a.e. in Q, and satisfy
P~ (D*w) < g a.e.in,

where g € LP(Q) with p > n. If —CiI < D*w(x) < O a.e. in Q) for some
C7 > 0, then w is an LP-viscosity subsolution of

P~ (D*w) < g in Q. (7.26)

Since u® is Lipschitz continuous in By_s, by (7.22), we see that v° is an
L™-viscosity subsolution of

P~ (D*f) < ¢° in B;_s.
Noting (7.25), in view of Proposition 6.2, we have

maxv® < Clln 2P (v%) " ||n(rs
Bi_s 5—2

< C (f_nax(vEV) T ey 7 (B1-s):

B s
which together with our choice of 3 yields

max v® < CO|(u”) [ pags, )
Bi_s

Therefore, by (7.20), we have

max u® < C'maxv® < C||(u)"||na(n,_y)s
B2 Bi_s
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Therefore, sending ¢ — 0 in the above, we finish the proof. O

Proof of Lemma 7.10. In order to show that w € C'(Q) is an LP-viscosity

subsolution of (7.26), we suppose the contrary; there are e,r > 0, Z € Q2 and
¢ € W2P(Q) such that 0 = (w — ¢)(&) = maxg(w — @), By (&) C 2, and

P (D?*¢) —g > 2¢ a.e. in B,(%).

We may suppose that & = 0 € Q. Setting ¢ (x) := ¢(x) + 7|z|* for small
7 > 0, we observe that

h:=P (D*))—g>¢e a.e. in B,.
Notice that 0 = (w — ¢)(0) > (w — ¢)(x) for x € B, \ {0}.

Moreover, we observe
P (D*(w—1)) < — a.e. in B,. (7.27)

Consider ws := w * ps, where ps is the standard mollifier for § > 0. From
our assumption, we see that, as § — 0,

(1) ws — w uniformly in B,,
(2) D?ws — D*w a.e. in B,.

By Lusin’s Theorem, for any o > 0, we find E, C B, such that |B,\ E,| < «,
[ P (=D*))yde < o,
Br\Eq

and
D*w; — D*w uniformly in E, (as § — 0).

Setting hs := P~ (D*(ws — ¢)), we find C' > 0 such that
hs < C + P (—=D%*))
because of our hypothesis. Hence, we have

(hs)* <0/ (14 [PT(=D™)) pdx+/ (hs)* [Pda.

Sending § — 0 in the above, by (7.27), we have
timsup | (hs)* 15m) < CII(L+ [P~ (=D sy < oo (7.25)

0—0
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On the other hand, in view of Proposition 6.2, we see that

max(ws — ) < max(ws — 1) + C|(hs) || o(5,)-

B,

Hence, by sending 6 — 0, this inequality together with (7.28) implies that

0 = max(w — 1)) < rggx(w — )+ Ca for any a > 0.

L4

This is a contradiction since maxyp, (w — ) < 0. O
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