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1 Introduction

The aim of this talk is to exhibit some recent results on the Aleksandrov-Bakelman-Pucci
(ABP for short) maximum principle from a series of joint works with A. Świȩch.

We are concerned with fully nonlinear second-order uniformly elliptic partial differen-
tial equations (PDE for short):

F (x,Du,D2u) = f(x) in Ω, (1)

where Ω ⊂ Rn is a bounded open set, and F : Ω × Rn × Sn → R. Here, Sn denotes the
set of n× n symmetric matrices with the standard order.

It is possible to discuss the case when F may depend on the unknown function u.
However, since we focus our topics on the maximum principle, we shall deal with F
independent of u for the sake of simplicity.

We shall also suppose
Ω ⊂ B1,

where Br := {x ∈ Rn | ∥x∥ < r}. We may derive a dependence on the diameter of Ω by a
scaling argument.

Throughout this talk, we at least suppose

p >
n

2
.

In 1981, Crandall and Lions introduced the notion of viscosity solutions for first-order
PDE of non-divergence type since we cannot use weak solutions in the distribution sense.
It was extended to second-order (possibly degenerate) elliptic/parabolic PDE. Up to now,
there have been many results on the viscosity solution theory and its applications when
PDE possess enough continuity. See [4] for instance.

On the other hand, in order to study weak solutions of fully nonlinear PDE with
discontinuous ingredients, the notion of Lp-viscosity solutions was introduced by Caffarelli-
Crandall-Kocan-Świȩch [3] in 1996 motivated by a celebrated work by Caffarelli [1]. See
also [2].

Definition 1. We call u ∈ C(Ω) an Lp-viscosity subsolution (resp., supersolution) of (1)
if for φ ∈ W 2,p

loc (Ω),

ess lim inf
y→x

{
F (y,Dφ(y), D2φ(y))− f(y)

}
≤ 0 (2)

(
resp., ess lim sup

y→x

{
F (y,Dφ(y), D2φ(y))− f(y)

}
≥ 0

)
(3)

provided u− φ attains its local maximum (resp., minimum) at x ∈ Ω.



Remark 2. (i) When F and f are continuous, if we replace W 2,p
loc (Ω) by C2(Ω), the above

definition is the same as the standard one by Crandall-Lions since (2) (resp., (3)) yields

F (x,Dφ(x), D2φ(x)) ≤ f(x) (resp., ≥ f(x)).

In fact, under appropriate hypotheses, when F and f are continuous, the notion of viscosity
solutions by Crandall-Lions coincides with that of Lp-viscosity solutions. We notice that
Lp-viscosity solutions are more restricted than the standard one because of C2(Ω) ⊂
W 2,p

loc (Ω).
(ii) We notice that if u ∈ C(Ω) is an Lp-viscosity subsolution (resp., supersolution) of (1),
and n

2 < p < p′, then it is an Lp′-viscosity subsolution (resp., supersolution) of (1).

We recall the definition of Lp-strong solutions:

Definition 3. We call u ∈ C(Ω) an Lp-strong subsolution (resp., supersolution) of (1) if
u ∈ W 2,p

loc (Ω), and

F (x,Du(x), D2u(x)) ≤ f(x) (resp., ≥ f(x)) a.e. in Ω.

We will write ∥ · ∥p for ∥ · ∥Lp(Ω) etc. if there is no confusion. Also, Lp
+(Ω) denotes the

set of nonnegative functions in Lp(Ω).
We use the following Pucci operators. We hope the readers not to be confused because

the oposite sign in the max and min below is often used, e.g. in [2]: for X ∈ Sn,

P+(X) = max{−trace(AX) | A ∈ Sn, λI ≤ A ≤ ΛI}, and P−(X) = −P+(−X).

Now, we give a list of hypotheses for F :
(i) P−(X − Y ) ≤ F (x, ξ,X)− F (x, ξ, Y ) ≤ P+(X − Y )

for x ∈ Ω, ξ ∈ Rn, X, Y ∈ Sn,
(ii) there is µ ∈ Lq

+(Ω) such that |F (x, ξ,O)| ≤ µ(x)|ξ|
for x ∈ Ω, ξ ∈ Rn,

(iii) F (x, 0, O) = 0 for x ∈ Ω.

(4)

We will refer to µ ∈ Lq
+(Ω) from the above definition (ii) of (4).

Remark 4. We notice that if u ∈ C(Ω) is an Lp-viscosity subsolution (resp., supersolu-
tion) of (1), then it is an Lp-viscosity subsolution (resp., supersolution) of (5) (resp., (6))
below.

For v : Ω → R, we denote the upper contact set of v in Ω by

Γ[v; Ω] := {x ∈ Ω | ∃ξ ∈ Rn s.t. v(y) ≤ v(x) + ⟨ξ, y − x⟩ for ∀y ∈ Ω}.

The well-known classical ABP maximum principle is as follows:

Theorem 5. (e.g. [6]) There exist Ck = Ck(n, λ/Λ) > 0 (k = 1, 2) such that for f ∈ Ln
+(Ω)

and µ ∈ Ln
+(Ω), if u ∈ C(Ω) is an Ln-strong subsolution (resp., supersolution) of

P−(D2u)− µ(x)|Du| = f(x) in Ω (5)

(resp., P+(D2u) + µ(x)|Du| = −f(x) in Ω), (6)

then it follows that
sup
Ω

u ≤ sup
∂Ω

u+ + C1e
C2∥µ∥nn∥f∥Ln(Γ[u+;Ω]) (7)(

resp., inf
Ω

u ≥ inf
∂Ω

(−u−)− C1e
C2∥µ∥nn∥f∥Ln(Γ[u−;Ω])

)
.



Remark 6. In [7, 8], for µ ∈ Lq(Ω) with q > n, Fok obtained the ABP maximum principle
for Lp-strong solutions when p > n− ε, where ε > 0 depends on q−n > 0. We notice that
the corresponding ε > 0 in our results does not depend on q − n > 0.

In what follows, we will only present the ABP maximum principle for subsolutions
since the one for supersolutions can be derived by considering −u.

2 Known results

We recall known results on the ABP maximum principle for Lp-viscosity solutions.

Proposition 7. ([1, 2]) Assume that f ∈ Ln
+(Ω)∩C(Ω). There exists C1 = C1(n, λ/Λ) >

0 such that if u ∈ C(Ω) is an Ln-viscosity subsolution of

P−(D2u) = f(x) in Ω,

then it follows that
sup
Ω

u ≤ sup
∂Ω

u+ + C1∥f∥Ln(Γ[u+;Ω]).

Notice that we have to suppose f to be continuous in Proposition 7. Later, this
hypothesis is removed in [3]. Furthermore, we may treat the case when PDE admit the
first derivative terms with bounded coefficients.

Proposition 8. ([3]) Assume that µ ∈ L∞
+ (Ω) and f ∈ Lp

+(Ω) for p > p̂. There exists
C1 = C1(n, λ/Λ, p, ∥µ∥∞) > 0 such that if u ∈ C(Ω) is an Lp-viscosity subsolution of

P−(D2u)− µ(x)|Du| = f(x) in Ω+[u] := {x ∈ Ω | u(x) > sup
∂Ω

u+}, (8)

then it follows that
sup
Ω

u ≤ sup
∂Ω

u+ + C1∥f∥Lp(Ω+[u]). (9)

In Proposition 8, if p ≥ n, then the region of the Lp-norm can be replaced by
Γ[u+; Ω+[u]].

Here, we give an existence result for Lp-strong solutions. In what follows, we suppose
enough regularity on ∂Ω so that the W 2,p-estimates hold up to the boundary. We refer to
[20] by Winter for the regularity near ∂Ω.

Proposition 9. ([3, 5]) Assume that f ∈ Lp(Ω) for p > p̂, and µ0 ≥ 0. There exist
a constant Ck = Ck(n, λ/Λ, p, µ0) > 0 (k = 3, 4) and an Lp-strong subsolution (resp.,
supersolution) of {

P+(D2u) + µ0|Du| = f(x) in Ω,
u = 0 on ∂Ω(

resp.,

{
P−(D2u)− µ0|Du| = f(x) in Ω,

u = 0 on ∂Ω

)
such that

∥u∥∞ ≤ C3∥f∥p, and ∥u∥W 2,p(Ω) ≤ C4∥f∥p. (10)

Remark 10. It is possible to show Lp-strong subsolutions (resp., supersolutions) in the
above are indeed Lp-strong solutions via a bit more precise observation while we only need
the existence of Lp-strong subsolution (resp., supersolution) for our later use. See [3] for
the details.



Now, we present an existence result for Lp-strong subsolutions when the PDE has
unbounded coefficients.

Proposition 11. ([13]) Assume that µ ∈ Lq(Ω) and f ∈ Lp(Ω), where (p, q) satisfies

q ≥ p ≥ n and q > n. (11)

There exist a constant Ck = Ck(n, λ/Λ, p, q, ∥µ∥q) > 0 (k = 3, 4) and an Lp-strong subso-
lution of {

P+(D2u) + µ(x)|Du| = f(x) in Ω,
u = 0 on ∂Ω

(12)

such that (10) holds.

Remark 12. (i) We can modify the argument of the proof of Proposition 9 to obtain
Proposition 11. Moreover, it is possible to verify that the above constructed Lp-strong
subsolutions are Lp-strong solutions as before. See [14] for the details.
(ii) In [8], Fok obtained the existence of Lp-strong subsolutions of (16) when q = p > n,
and µ ∈ Lq(Ω) ∩ L2n(Ωε) for some ε > 0, where Ωε := {x ∈ Ω | dist(x, ∂Ω) < ε}.
(iii) The hypothesis (11) is equivalent to the case when q ≥ p > n or q > p = n.

3 Main results

We shall show the ABP maximum principle for Lp-viscosity subsolutions of (5) and

P−(D2u)− µ(x)|Du|m = f(x) in Ω, (13)

where m > 1, µ ∈ Lq(Ω) and f ∈ Lp(Ω).

3.1 Linear growth

First, we consider (5) in case when (11).

Theorem 13. ([13]) Assume that µ ∈ Lq
+(Ω) and f ∈ Lp

+(Ω), where (p, q) satisfies (11).
There exist Ck = Ck(n, λ/Λ) > 0 (k = 1, 2) such that if u ∈ C(Ω) is an Ln-viscosity
subsolution of (5), then it follows that

sup
Ω

u ≤ sup
∂Ω

u+ + C1e
C2∥µ∥nn∥f∥Ln(Ω). (14)

Remark 14. (i) Although the classical ABP maximum principle has a slightly better
estimate with the upper contact set Γ[u+; Ω], this estimate is enough to use in a proof of
the weak Harnack inequality.
(ii) In [8], Fok obtained the ABP maximum principle for Lp-viscosity subsolutions of (5)
when q = p > n, and µ ∈ Lq(Ω) ∩ L2n(Ωε) for some ε > 0. The reason why µ ∈ L2n was
needed is that we used the Hopf-Cole transformation in [8] (and also [6]) to cancel the
quadratic |Du|2.

We next consider the case when

p̂ < p < n < q. (15)



Theorem 15. ([13]) Assume that µ ∈ Lq
+(Ω) and f ∈ Lp

+(Ω), where (p, q) satisfies (15).
There exist C1 = C1(n, λ/Λ) > 0, C2 = C2(n, λ/Λ, p, q) > 0 and N = N(n, p, q) ∈ N such
that if u ∈ C(Ω) is an Ln-viscosity subsolution of (5), then it follows that

sup
Ω

u ≤ sup
∂Ω

u+ + C1

{
eC2∥µ∥nn∥µ∥Nq +

N−1∑
k=0

∥µ∥kq

}
∥f∥Lp(Ω).

To prove Theorem 15, we established an “iterated comparison function” method.
Thanks to this maximum principle, we may extend Proposition 11 to the case of (15).

Proposition 16. ([13]) Assume that µ ∈ Lq(Ω) and f ∈ Lp(Ω), where (p, q) satisfies
(15). There exist a constant Ck = Ck(n, λ/Λ, p, q, ∥µ∥q) > 0 (k = 3, 4) and an Lp-strong
subsolution of (12) such that (10) holds.

In case of q = n, we need to suppose that ∥µ∥n is small to get the ABP maximum
principle.

Theorem 17. ([16]) Assume that µ ∈ Lq(Ω) and f ∈ Lp(Ω), where (p, q) satisfies

q = n > p > p̂. (16)

There exist δ0 = δ0(n, λ/Λ, p) > 0 and C1 = C1(n, λ/Λ, p) > 0 such that if

∥µ∥n ≤ δ0, (17)

and u ∈ C(Ω) is an Ln-viscosity subsolution of (5), then it follows that

sup
Ω

u ≤ sup
∂Ω

u+ + C1∥f∥p. (18)

To prove Theorem 17, under (17) for some δ0 > 0, we have first to construct Lp-strong
subsolutions of (12). See ([16]) for this result.

3.2 Superlinear growth

We shall consider (13) with m > 1 instead of (5).
It is impossible to establish the ABP maximum principle in general provided the PDE

may have superlinear growth in Du. In fact, if it were true with no restrition, we may
construct strong/classical solutions of

−△ u+ |Du|2 = f(x)

under the Dirichlet condition, where f ∈ C∞. Indeed, once we obtain L∞-estmates,
we could show the existence of solutions, which contradicts to the fact that we cannot
expect the existnece of solutions with quadratic nonlinear terms in Du because we know
an example of non-existence by Nagumo [17].

In general, there are counter examples so that the maximum principle fails when the
PDE have superlinear growth terms in Du. We refer to [12] and [13] for such examples.

When p > n, we do not need any restriction for m > 1.



Theorem 18. ([13]) Assume that µ ∈ Lq
+(Ω) and f ∈ Lp

+(Ω), where (p, q) satisfies

q ≥ p > n, q > n and m > 1. (19)

There exist δ1 = δ1(n, λ,Λ, p,m) > 0 and C1 = C1(n, λ,Λ, p,m) > 0 such that if

∥f∥m−1
p ∥µ∥q ≤ δ1, (20)

and u ∈ C(Ω) is an Lp-viscosity subsolution of (12), then (18) holds.

When p ∈ (p̂, n], we need some restriction for m > 1.

Theorem 19. ([13]) Assume that µ ∈ Lq
+(Ω) and f ∈ Lp

+(Ω), where (p, q,m) satisfies

q > n ≥ p > p̂, and 1 < m < 2− n

q
. (21)

There exist δ1 = δ1(n, λ,Λ, p, q,m) > 0, C1 = C1(n, λ,Λ, p, q,m) > 0 and N = N(n, p, q,m)
∈ N such that if (20) holds, and u ∈ C(Ω) is an Lp-viscosity subsolution of (12), then (18)
holds.

Remark 20. As in the linear growth case, it is possible to use the existence of Lp-strong
subsolutions of the associated PDE:

P+(D2u) + 2m−1µ(x)|Du|m = f(x) in Ω,

where 2m−1 comes from the inequality (a+ b)m ≤ 2m−1(am+ bm) for a, b ≥ 0. See [15] for
the details.

4 Applications

We shall give some applications of the ABP maximum principle. In order to prove the
assertions below, we have to use the argument in [1, 2, 3] with our ABP maximum principle
in the preceeding section.

4.1 Relation between Lp-viscosity and Lp-strong solutions

When q = ∞, in [3], the following equivalence holds. If u ∈ C(Ω) is an Lp-strong subso-
lution of (1) if and only if it is an Lp-viscosity subsolution of (1) such that u ∈ W 2,p

loc (Ω).
This relation holds true for PDE with unbounded ingredients.

If we allow F to have superlinear terms in Du as in (12), then the following hypotheses
are reasonable for F in place of (ii) of (4): Fix m ≥ 1.{

There is µ ∈ Lq
+(Ω) such that, for x ∈ Ω, ξ, η ∈ Rn, X ∈ Sn,

|F (x, ξ,X)− F (x, η,X)| ≤ µ(x)(|ξ|m−1 + |η|m−1)|ξ − η|. (22)

We will consider the following cases:
(i) q ≥ p ≥ n, q > n, m ≥ 1,

(ii) q > n > p > p̂, 1 < m < 1 +
p(q − n)

q(n− p)
,

(iii) p = q = n, m = 1,
(iv) q = n > p > p̂, m = 1.

(23)

We notice that if p is enough close to n in (ii) of (23), then we may treat the case of
m = 2, which is important from a view point of applications.



Theorem 21. ([14]) Assume (i), (iii) of (4) and (22).
(I) Assume that one of (i), (ii), (iii) in (23) holds. If u ∈ C(Ω) is an Lp-strong subsolution
of (1), then it is an Lp-viscosity subsolution of (1).
(II) Assume that one of (i), (ii), (iv) in (23) holds. If an Lp-viscosity subsolution u ∈
C(Ω) belongs to W 2,p

loc (Ω) of (1), then it is an Lp-strong subsolution of (1).

Remark 22. To prove the cases of m > 1, we need the ABP maximum principle for

P−(D2u)− µ1(x)|Du| − µm(x)|Du|m = f(x)

with precise estimates. See Nakagawa [18] for the details.

4.2 Weak Harnack inequality

In view of the ABP maxmimum principle, we can prove the weak Harnack inequality,
which implies the Hölder continuity of Lp-viscosity solutions of (1). We refer to Sirakov
[19] by a different approach for the Hölder continuity of Lp-viscosity solutions of (1) with
unbounded ingredients.

We can apply the weak Harnack inequality to show the strong maximum principle.
See section 5 in [14] for this application.

First, we consider the case when PDE have linear growth in Du.

Theorem 23. Assume that µ ∈ Lq
+(B2) and f ∈ Lp

+(B2), where (p, q) satisfies one of{
(i) q ≥ p > p̂, q > n,
(ii) q = n > p > p̂.

(24)

There exist C5 = C5(n, λ/Λ, p, q, µ) > 0 and r = r(n, λ/Λ) > 0 such that if u ∈ C(B2) is
a nonnegative Lp-viscosity supersolution of

P+(D2u) + µ(x)|Du| = −f(x) in B2,

then it follows that (∫
B1

urdx

) 1
r

≤ C5

(
inf
B1

u+ ∥f∥Lp(B2)

)
. (25)

Remark 24. (i) We refer to [14] for a precise dedendence on ∥µ∥q in C5 particularly in
case of (15).
(ii) Under (i) in (24), C5 depends on ∥µ∥n while it depends on µ itself under (ii) of (24).
Because in both cases, we need to assume ∥µ∥n is small at the first step.
(iii) In [8], Fok obtained the weak Harnack inequality for Lp-viscosity supersolutions
assuming µ ∈ L2n.

We discuss the weak Harnack ineqaulity for PDE containg superlinear terms in Du.

Theorem 25. ([15]) Fix M > 0 and m > 1. Assume that µ ∈ Lq
+(B2) and f ∈ Lp

+(B2),
where (p, q) satisfies (i) of (24) and

1 < m < 2− n

q
. (26)

There exist δ2 = δ2(n, λ,Λ, p,m,M) > 0, C5 = C5(n, λ,Λ, p, q, R) > 0 and r = r(n, λ,Λ, p, q,m) >
0 such that if

∥µ∥q(1 + ∥f∥m−1
p ) ≤ δ2,



and u ∈ C(B2) is a nonnegative Lp-viscosity supersolution of

P+(D2u) + µ(x)|Du|m = −f(x) in B2

such that 0 ≤ u ≤ M in B2, then it follows that (25) holds.

We refer to [11] for the Hölder continuity of viscosity solutions when PDE have super-
linear growth terms in Du.

It is easy to establish the weak Harnack inequality near the boundary, which could be
used to show some maximum principle in unbounded domains. See section 8 in [14] for
this. See also Koike-Nakagawa [10] and the references theirin for an application to the
Phragmén-Lindelöf theorem.

4.3 Local maximum principle

Although the weak Harnack inequality shows that Lp-viscosity solutions of (1) satisfy
Hölder continuity, it is natural to ask if the local maximum principle for Lp-viscosity
subsolutions holds or not. In fact, when we have unbounded coefficients to Du, we cannot
apply the standard method as in [6]. However, we may modify the argument in [2]. See a
recent work [9] by Imbert.

Theorem 26. Fix s > 0. Assume that µ ∈ Lq
+(B2) and f ∈ Lp

+(B2), where (p, q) satisfies
one of (24). There exists C6 = C6(n, λ/Λ, p, q, µ, s) > 0 such that if u ∈ C(B2) is an
Lp-viscosity subsolution of

P−(D2u)− µ(x)|Du| = f(x) in B2,

then it follows that

sup
B1

u ≤ C6

{(∫
B1

us+dx

) 1
s

+ ∥f∥Lp∧n(B2)

}
. (27)

Remark 27. When (i) in (24) holds, C6 depends on ∥µ∥q while it depends on µ itself
under (ii) of (24).
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