Three important corrections

25 June 2014

Statement of Theorem 4.2.

Delete "upper (resp., lower) semicontinuous".

Statement of Theorem 4.3.

In the definition of \mathcal{S} and $\hat{\mathcal{S}}$, " $v \in USC(\Omega)$ " and " $w \in LSC(\Omega)$ ", respectively, should be replaced by " $v : \Omega \to \mathbb{R}$ " and " $w : \Omega \to \mathbb{R}$ ".

Proof of Theorem 4.3.

We show that $u(x) := \sup_{v \in S} v(x)$ is a viscosity solution. We first note $S \neq \emptyset$.

It is already known that u is a viscosity subsolution. Thus, we only need to show that it is a viscosity supersolution. Suppose that it is not a viscosity supersolution. Then, there are $\phi \in C^2(\Omega)$ and $\hat{x} \in \Omega$ such that $0 = (u_* - \phi)(\hat{x}) \leq (u_* - \phi)(x)$ ($\forall x \in \Omega$), and with some $\theta > 0$,

$$F(\hat{x}, \phi(\hat{x}), D\phi(\hat{x}), D^2\phi(\hat{x})) \le -\theta.$$

Setting $\psi(x) := \phi(x) - |x - \hat{x}|^4$, we see that

$$\begin{cases} (i) \quad (u_* - \psi)(\hat{x}) = 0 \le (u_* - \psi)(x) - |x - \hat{x}|^4 \ (\forall x \in \Omega) \\ (ii) \quad F(\hat{x}, \psi(\hat{x}), D\psi(\hat{x}), D^2\psi(\hat{x})) \le -\theta \end{cases}$$
(1)

Thus, because of $F \in C(\Omega \times \mathbb{R} \times \mathbb{R}^n \times S^n)$ and $\phi \in C^2(\Omega)$, there is $r_0 > 0$ such that

$$F(x,\psi(x)+t,D\psi(x),D^2\psi(x)) \le 0 \quad (\forall x \in B_{2r_0}(\hat{x}) \in \Omega, |t| \le r_0).$$
(2)

We shall show

$$\psi(\hat{x}) < \eta(\hat{x}). \tag{3}$$

If not, since $\psi(x) \leq u_*(x) \leq \eta(x) \ (\forall x \in \Omega)$, then $\eta - \psi$ attains its minimum at $\hat{x} \in \Omega$. From the definition of η , we immediately obtain a contradiction.

1

Setting $\hat{\tau} := \frac{1}{3} \{ \eta(\hat{x}) - \psi(\hat{x}) \} > 0$, by the semicontinuity of η , we find $r_1 \in (0, r_0]$ such that

$$\eta(x) \ge \eta(\hat{x}) - \hat{\tau} \ge \psi(\hat{x}) + 2\hat{\tau} \ge \psi(x) + \hat{\tau} \quad (x \in B_{2r_1}(\hat{x}))$$

On the other hand, we may suppose

$$u(x) - \psi(x) \ge r_1^4 \quad (x \in B_{2r_1}(\hat{x}) \setminus \overline{B}_{r_1}(\hat{x})).$$

Set $\tau_0 := \min\{\hat{\tau}, \frac{r_1^4}{2}\} > 0$. We define w by

$$w(x) := \begin{cases} \max\{u(x), \psi(x) + \tau_0\} & (x \in B_{2r_1}(\hat{x})) \\ u(x) & (x \in \Omega \setminus B_{2r_1}(\hat{x})) \end{cases}$$

Next, we shall show

$$\sup_{\Omega} (w - u) > 0. \tag{4}$$

Since $0 = (u_* - \psi)(\hat{x}) = \lim_{r \to 0} \inf\{(u - \psi)(y) \mid y \in B_r(\hat{x})\}$, we can choose $\tilde{x} \in B_{r_1}(\hat{x})$ such that $\tau_0 > (u - \psi)(\tilde{x})$.

We shall prove $w \in S$. By the choice of $\tau_0, r_1 > 0$, we can show $\xi(x) \le w(x) \le \eta(x)$ ($\forall x \in \Omega$). Hence, we conclude (4).

Therefore, to get a contradiction, it remains to show that w is a viscosity subsolution. For $\zeta \in C^2(\Omega)$, suppose $(w^* - \zeta)(x) \leq (w^* - \zeta)(z) = 0$ ($\forall x \in \Omega$). Then, we shall verify

$$F(z,\zeta(z),D\zeta(z),D^2\zeta(z)) \le 0.$$
(5)

In case of $z \in \Omega \setminus \overline{B}_{r_1}(\hat{x}) =: \Omega', u^* - \psi$ takes its maximum at $z \in \Omega'$. Thus, we conclude the proof since w = u in $\Omega \setminus \overline{B}_{r_1}(\hat{x})$.

Finally, in case of $z \in B_{2r_1}(\hat{x})$, $\psi + \tau_0$ is a classical subsolution, the ellipticity of F implies that it is a viscosity subsolution. Therefore, $w^* = \max\{u^*, \psi + \tau_0\}$ is again a viscosity subsolution. This fact yields a contradiction. \Box

2

Proof of Theorem 5.4.

For simplicity, we write u and v for u^* and v_* , respectively. Suppose $\sup_{\overline{\Omega}}(u-v) =: 2\Theta > 0$. For $\alpha \in (0,1)$, setting $U(x) := u(x) - \alpha d(x)$, we see that U is a viscosity subsolution of

$$\begin{cases} F(x, U, DU, D^2U) - \tilde{\omega}_L(C_1\alpha) = 0 & \text{in } \Omega\\ \langle \boldsymbol{n}(x), DU \rangle - g(x) + \alpha = 0 & \text{on } \partial \Omega \end{cases},$$
(6)

where $C_1 := \max_{\overline{\Omega}}(|Dd| + |D^2d|) > 0$. Similarly, we verify that $V(x) := v(x) + \alpha d(x)$ is a viscosity supersolution of

$$\begin{cases} F(x, V, DV, D^2V) + \tilde{\omega}_L(C_1\alpha) = 0 & \text{in } \Omega\\ \langle \boldsymbol{n}(x), DV \rangle - g(x) - \alpha = 0 & \text{on } \partial\Omega \end{cases}$$
(7)

For small $\alpha > 0$, we may suppose $\theta := \theta_{\alpha} = \sup_{\overline{\Omega}} (U - V) \ge \Theta > 0$. When $\sup_{\partial \Omega} (U - V) < \theta$, we may follow the standard argument. Thus, we shall suppose $\sup_{\partial \Omega} (U - V) = \theta$.

Let $z \in \partial \Omega$ be such that $(U - V)(z) = \theta$. For $\delta > 0$, a mapping $x \in \overline{\Omega} \to U(x) - V(x) - \delta |x - z|^2$ takes its strict local maximum at z. Then, for $\varepsilon, \delta \in (0, 1)$, we set $\phi(x, y) := \frac{1}{2\varepsilon} |x - y|^2 + g(z) \langle \boldsymbol{n}(z), x - y \rangle + \delta |x - z|^2$. Let $(x_{\varepsilon}, y_{\varepsilon}) \in \overline{\Omega \cap B_s(z)} \times \overline{\Omega \cap B_s(z)}$ be a point where $\Phi(x, y) := U(x) - V(y) - \phi(x, y)$ attains its maximum over $\overline{\Omega \cap B_s(z)} \times \overline{\Omega \cap B_s(z)}$.

By $\hat{r} > 0$ for the uniform exterior sphere condition, and $\tilde{r} > 0$ for the ρ , we let $s := \frac{1}{2} \min\{\hat{r}, \tilde{r}\}$. It is easy to see

$$|U(x_{\varepsilon})| \leq \max\left\{\sup_{\overline{\Omega}} U^{+}, \sup_{\overline{\Omega}} V^{-}\right\} + \sup_{\partial \Omega} |g| \times \operatorname{diam}(\Omega) =: R.$$

Since $\Phi(x_{\varepsilon}, y_{\varepsilon}) \ge \Phi(z, z)$, there is $\hat{x} \in \overline{\Omega \cap B_s(z)}$ such that $\lim_{\varepsilon \to 0} (x_{\varepsilon}, y_{\varepsilon}) = (\hat{x}, \hat{x})$. Since $\Phi(\hat{x}, \hat{x}) \ge \limsup_{\varepsilon \to 0} \Phi(x_{\varepsilon}, y_{\varepsilon})$, we have

4

$$U(\hat{x}) - V(\hat{x}) - \delta |\hat{x} - z|^2 \ge \theta.$$

Hence, $\hat{x} = z$. Moreover, we have

$$\lim_{\varepsilon \to 0} \frac{|x_{\varepsilon} - y_{\varepsilon}|^2}{\varepsilon} = 0.$$
(8)

In view of Ishii's lemma to $U(x) - g(z)\langle \boldsymbol{n}(z), x \rangle - \delta |x - z|^2$ and $-V(y) + g(z)\langle \boldsymbol{n}(z), y \rangle$, setting $p_{\varepsilon} := \frac{1}{\varepsilon}(x_{\varepsilon} - y_{\varepsilon}) + g(z)\boldsymbol{n}(z)$, we can find $X, Y \in S^n$ such that

$$\begin{pmatrix} (p_{\varepsilon} + 2\delta(x_{\varepsilon} - z), X + 2\delta I) \in \overline{J}^{2,+}U(x_{\varepsilon}) \\ (p_{\varepsilon}, -Y) \in \overline{J}^{2,-}V(y_{\varepsilon}) \\ \begin{pmatrix} X & 0 \\ 0 & Y \end{pmatrix} \leq \frac{3}{\varepsilon} \begin{pmatrix} I & -I \\ -I & I \end{pmatrix} \end{pmatrix}$$

When $x_{\varepsilon} \in \partial \Omega$, we calculate as follows:

$$\begin{aligned} \langle \boldsymbol{n}(x_{\varepsilon}), D_x \phi(x_{\varepsilon}, y_{\varepsilon}) \rangle &= \langle \boldsymbol{n}(x_{\varepsilon}), p_{\varepsilon} + 2\delta(x_{\varepsilon} - z) \rangle \\ &\geq -\frac{1}{2\hat{r}\varepsilon} |x_{\varepsilon} - y_{\varepsilon}|^2 + g(z) \langle \boldsymbol{n}(x_{\varepsilon}), \boldsymbol{n}(z) \rangle - 2\delta |x_{\varepsilon} - z| \end{aligned}$$

Thus, for a fixed $\alpha > 0$, for any small $\varepsilon > 0$, the continuity of g and n yields

$$\langle \boldsymbol{n}(x_{\varepsilon}), D_x \phi(x_{\varepsilon}, y_{\varepsilon}) \rangle - g(x_{\varepsilon}) \ge -\frac{\alpha}{2} > -\alpha$$

Hence, since U is a viscosity subsolution on $\partial \Omega$, we have

$$F(x_{\varepsilon}, U(x_{\varepsilon}), p_{\varepsilon} + 2\delta(x_{\varepsilon} - z), X + 2\delta I) - \tilde{\omega}_L(C_1\alpha) \le 0.$$

In case of $x_{\varepsilon} \in \Omega$, the above inequality directly follows from the definition.

When $y_{\varepsilon} \in \partial \Omega$, we similarly have

$$\langle \boldsymbol{n}(y_{\varepsilon}), -D_y\phi(x_{\varepsilon}, y_{\varepsilon}) \rangle - g(y_{\varepsilon}) \leq \frac{\alpha}{2} < \alpha.$$

Thus, the definition of viscosity supsersolutions implies

$$F(y_{\varepsilon}, V(y_{\varepsilon}), p_{\varepsilon}, -Y) + \tilde{\omega}_L(C\alpha) \ge 0.$$

Therefore, we have

$$\begin{split} &\omega_0(U(x_{\varepsilon}) - V(y_{\varepsilon})) \\ &\leq \quad F(y_{\varepsilon}, U(x_{\varepsilon}), p_{\varepsilon}, -Y) - F(x_{\varepsilon}, U(x_{\varepsilon}), p_{\varepsilon}, X) + \tilde{\omega}_L(2\delta \text{diam}(\Omega)) + 2\tilde{\omega}_L(C_1\alpha) \\ &\leq \quad \hat{\omega}_R\left(|x_{\varepsilon} - y_{\varepsilon}|\left(|p_{\varepsilon}| + 1\right)\right) + \tilde{\omega}_L(2\delta \text{diam}\Omega) + 2\tilde{\omega}_L(C_1\alpha) \end{split}$$

5

Sending $\varepsilon \to 0$, we get

$$\omega_0(\Theta) \le \omega_0(\theta) \le \tilde{\omega}_L(2\delta \operatorname{diam}(\Omega)) + 2\tilde{\omega}_L(C_1\alpha).$$

Hence, letting $\delta, \alpha \to 0$, we get $\omega_0(\Theta) \leq 0$, which yields a contradiction. \Box